

Lecture Notes in Computer Science 3381
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Peter Vojtáš
Mária Bieliková
Bernadette Charron-Bost
Ondrej Sýkora (Eds.)

SOFSEM 2005:
Theory and Practice
of Computer Science

31st Conference on Current Trends
in Theory and Practice of Computer Science
Liptovský Ján, Slovakia, January 22-28, 2005, Proceedings

13

Volume Editors

Peter Vojtáš
P.J. Šafárik University, Department of Computer Science, Faculty of Science
Jesenná 5, 04154 Košice, Slovak Republic
E-mail: vojtas@upjs.sk

Mária Bieliková
Slovak University of Technology
Faculty of Informatics and Information Technologies
Ilkovičova 3, 812 19 Bratislava, Slovak Republic
E-mail: bielik@fiit.stuba.sk

Bernadette Charron-Bost
LIX, École Polytechnique
91128 Palaiseau Cedex, France
E-mail: charron@lix.polytechnique.fr

Ondrej Sýkora
Loughborough University, Department of Computer Science
Loughborough, Leicestershire LE11 3TU, UK
E-mail: o.sykora@lboro.ac.uk

Library of Congress Control Number: 2004117173

CR Subject Classification (1998): F.2, F.1, D.2, G.2, H.3, H.2.8, H.4, F.3

ISSN 0302-9743
ISBN 3-540-24302-X Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11375982 06/3142 5 4 3 2 1 0

Preface

This volume contains papers selected for presentation at the 31st Annual Con-
ference on Current Trends in Theory and Practice of Informatics – SOFSEM
2005, held on January 22–28, 2005 in Liptovský Ján, Slovakia.

The series of SOFSEM conferences, organized alternately in the Czech Re-
public and Slovakia since 1974, has a well-established tradition. The SOFSEM
conferences were originally intended to break the Iron Curtain in scientific ex-
change. After the velvet revolution SOFSEM changed to a regular broad-scope
international conference. Nowadays, SOFSEM is focused each year on selected
aspects of informatics. This year the conference was organized into four tracks,
each of them complemented by two invited talks:

– Foundations of Computer Science (Track Chair: Bernadette Charron-Bost)
– Modeling and Searching Data in the Web-Era (Track Chair: Peter Vojtáš)
– Software Engineering (Track Chair: Mária Bieliková)
– Graph Drawing (Track Chair: Ondrej Sýkora)

The aim of SOFSEM 2005 was, as always, to promote cooperation among
professionals from academia and industry working in various areas of informatics.
Each track was complemented by two invited talks.

The SOFSEM 2005 Program Committee members coming from 13 countries
evaluated 144 submissions (128 contributed papers and 16 student research fo-
rum papers). After a careful review process (counting at least 3 reviews per
paper), followed by detailed discussions in the PC, and a co-chairs meeting held
on October 8, 2005 in Bratislava, Slovakia, 44 papers (overall acceptance rate
34.38%) were selected for presentation at SOFSEM 2005: 28 full contributed pa-
pers (acceptance rate 21.88%) and 16 short contributed papers selected by the
SOFSEM 2005 PC for publication in the Springer LNCS proceedings volume.

An integral part of SOFSEM is the Student Research Forum. The forum
offers the opportunity to publish, present and discuss student projects, to receive
feedback on both the original results of scientific work as well as on work in
progress. The Program Committee selected 7 papers for publication (from 16
submitted) for presentation at the Student Research Forum session. The best
student paper by Martin Senft was selected and included in these proceedings.

We would like to thank all Program Committee members for their meritorious
work in evaluating the submitted papers, as well as numerous additional referees
who assisted the Program Committee members.

As editors of these proceedings, we are much indebted to all the contribu-
tors to the scientific program of the symposium, especially to the authors of
the papers. Special thanks go to those authors who prepared the manuscripts
according to the instructions and made life easier for us. We would also like to
thank those who responded promptly to our requests for minor modifications

VI Preface

and corrections in their manuscripts. The database and electronic support sys-
tem for the Program Committee was designed by Rastislav Královič. Our special
thanks go to Richard Královič for most of the hard technical work in preparing
this volume. We are also thankful to the members of the Organizing Commit-
tee led by Dana Pardubská who made sure that the conference ran smoothly
in a pleasant environment. Last, but not least, we want to thank Springer for
excellent cooperation in the publication of this volume.

January, 2005 Mária Bieliková
Bernadette Charron-Bost
Ondrej Sýkora
Peter Vojtáš

Organization

Steering Committee

Branislav Rovan, Chair Comenius University, Bratislava, Slovakia
Miroslav Bartošek, Secretary Masaryk University, Brno, Czech Republic
Mária Bieliková Slovak University of Technology in Bratislava,

Slovakia
Peter van Emde Boas University of Amsterdam, The Netherlands
Keith G. Jefferey CLRC RAL, Chilton, Didcot, Oxon, UK
Antońın Kučera Masaryk University, Brno, Czech Republic
Július Štuller Institute of Computer Science,

Prague, Czech Republic
Gerard Tel Utrecht University, The Netherlands
Petr Tůma Charles University in Prague, Czech Republic

Program Committee

Mária Bieliková, Co-chair Bratislava
Bernadette Charron-Bost, Co-chair Palaiseau
Ondrej Sýkora, Co-chair Loughborough
Peter Vojtáš, Chair Košice

Claude Crepeau (Montréal)
Ulrich Eisenecker (Zweibrücken)
Ghica van Emde Boas (Heemstede)
Viliam Geffert (Košice)
Sergio Greco (Cosenza)
Patrick Healy (Limerick)
Juraj Hromkovič (Zürich)
Michael Kaufmann (Tübingen)
Rastislav Královič (Bratislava)
Jan Kratochv́ıl (Prague)
Giuseppe Liotta (Perugia)
Frederic Magniez (Orsay)
Peter Mellor (London)
Pavol Návrat (Bratislava)
Jerzy Nawrocki (Poznań)
Patrice Ossona de Mendez (Paris)

Catuscia Palamidessi (Palaiseau)
Dana Pardubská (Bratislava)
Dimitris Plexousakis (Heraklion)
Jaroslav Pokorný (Prague)
Karel Richta (Prague)
Mark Roantree (Dublin)
Klaus-Dieter Schewe

(Palmerston North)
Václav Snášel (Ostrava)
Gerard Tel (Utrecht)
Ioannis Tollis (Dallas)
Petr Tůma (Prague)
Imrich Vrťo (Bratislava)
Krzysztof Wecel (Poznań)
Pavel Zezula (Brno)

VIII Organization

Additional Referees

G. Andrejková
S. Barton
M. Batko
T. Biedl
H.-J. Boeckenhauer
D. Bongartz
S. Brlek
L. Bulej
N. Busi
T. Chothia
I. Černá
E. Danna
E. Di Giacomo
W. Didimo
S. Dobrev
V. Dohnal
V. Dujmovic
C. Durr
P. Eades
P. van Emde Boas
C. Endler
H. Fernau
S. Flesca
M. Forǐsek
F. Furfaro
J.M. Gabbay
J. Gajdoš́ıková
M. Galbavý
D. Galmiche
A. Garg
L. Giordano
D. Gottesman
D. Gross
D. Gruska
P. Gurský
P. Hájek
P. Harrenstein

D. Hirschkoff
P. Hliněný
T. Horváth
L. Ištoňová
J. Ivančo
M. Jǐrina Jr.
C. Johnen
G. Juhás
T. Kalibera
B. Katreniak
J. Kempe
M. Klazar
S. Kobourov
I. Koffina
G. Kokkinidis
J.-C. Konig
V. Koutný
S. Krajči
K. Kritikos
Ri. Královič
J. Kupke
S. Laplante
A. Laurent
F. Le Fessant
P. Lennartz
K. Lynch
E. Masciari
V. Mencl
D. Miller
P. Mlynarč́ık
I. Mlynková
F. Morain
F. Mráz
P. Nadeau
F.Z. Nardelli
L. Nebeský
R. Neruda

R. Ostertág
Ch. Papamanthou
M. Patrignani
J.-F. Perrot
I. Phillips
T. Pitner
M. Pizzonia
A. Pugliese
M. de Rougemont
M. Santha
S. Seibert
L. Sidirourgos
T. Skopal
A. Slobodová
J. Sochor
L. Stacho
J. Stern
L. Sanselme
D. Swierstra
A. Szabari
A. Tagarelli
G. Tel
W. Unger
F.D. Valencia
W.F. de la Vega
P. Veltri
P. Verbaan
Y. Verhoeven
F. Vernadat
M.G. Vigliotti
J. Vinař
M. Vomlelová
V. Vranić
G. Woeginger
R. de Wolf
I. Žežula

Organization IX

Organized by

Slovak Society for Computer Science

Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava

in cooperation with

Czech Society for Computer Science

Faculty of Informatics and Information Technologies,
Slovak University of Technology, Bratislava

Faculty of Science, Institute of Informatics, P.J. Šafárik University, Košice

Supported by

European Association for Theoretical Computer Science

Slovak Research Consortium for Informatics and Mathematics

Organizing Committee

Vanda Hambálková
Vladimı́r Koutný
Rastislav Královič
Richard Královič
Zuzana Kubincová

Edita Máčajová
Marek Nagy
Dana Pardubská (chair)
Viliam Solčány

Table of Contents

Invited Talks

Discovering Treewidth
Hans L. Bodlaender . 1

From Research Prototypes to Industrial Strength Open Source
Products – The ObjectWeb Experience

Emmanuel Cecchet . 17

How Hard Is It to Take a Snapshot?
Faith Ellen Fich . 28

Logical Foundations for Data Integration
Maurizio Lenzerini . 38

Recent Advances in Graph Drawing
Petra Mutzel . 41

The Hyperdatabase Network – New Middleware for Searching and
Maintaining the Information Space

Hans-Jörg Schek . 42

Architecture of a Business Framework for the .NET Platform and Open
Source Environments

Thomas Seidmann . 47

Progress on Crossing Number Problems
László A. Székely . 53

Full Contributed Papers

Greedy Differential Approximations for Min Set Cover
C. Bazgan, J. Monnot, V. Th. Paschos, F. Serrière 62

A Methodology of Visual Modeling Language Evaluation
Anna Bobkowska . 72

Local Computations on Closed Unlabelled Edges: The Election Problem
and the Naming Problem

Jérémie Chalopin . 82

XII Table of Contents

A Hierarchical Markovian Mining Approach for Favorite Navigation
Patterns

Jiu Jun Chen, Ji Gao, Jun Hu, Bei Shui Liao . 92

Non-planar Orthogonal Drawings with Fixed Topology
Markus Chimani, Gunnar W. Klau, René Weiskircher 96

A Topology-Driven Approach to the Design of Web Meta-search
Clustering Engines

Emilio Di Giacomo, Walter Didimo, Luca Grilli, Giuseppe Liotta . . . 106

Computing Upward Planar Drawings Using Switch-Regularity
Heuristics

Walter Didimo . 117

Serial and Parallel Multilevel Graph Partitioning Using Fixed Centers
Kayhan Erciyeş, Ali Alp, Geoffery Marshall . 127

Two-Layer Planarization: Improving on Parameterized Algorithmics
Henning Fernau . 137

On the Stability of Approximation for Hamiltonian Path Problems
Luca Forlizzi, Juraj Hromkovič, Guido Proietti, Sebastian Seibert 147

Robustness of Composed Timed Systems
Hacène Fouchal, Antione Rollet, Abbas Tarhini 157

Topology Generation for Web Communities Modeling
György Frivolt, Mária Bieliková . 167

Recursion Versus Replication in Simple Cryptographic Protocols
Hans Hüttel, Jiř́ı Srba . 178

Modeling Data Integration with Updateable Object Views
Piotr Habela, Krzysztof Kaczmarski, Hanna Kozankiewicz,
Kazimierz Subieta . 188

Fixed-Parameter Tractable Algorithms for Testing Upward Planarity
Patrick Healy, Karol Lynch . 199

Read/Write Based Fast-Path Transformation for FCFS Mutual
Exclusion

Prasad Jayanti, Srdjan Petrovic, Neha Narula . 209

Adjustment of Indirect Association Rules for the Web
Przemys�law Kazienko, Mariusz Matrejek . 219

Table of Contents XIII

Anonymous Communication with On-line and Off-line Onion Encoding
Marek Klonowski, Miros�law Kuty�lowski, Filip Zagórski 229

Characteristic Patterns for LTL
Antońın Kučera, Jan Strejček . 239

Planar Straight-Line Drawing in an O(n) × O(n) Grid with Angular
Resolution Ω(1/n)

Maciej Kurowski . 250

Modeling Nested Relationships in XML Documents Using Relational
Databases

Olli Luoma . 259

RAQ: A Range-Queriable Distributed Data Structure
Hamid Nazerzadeh, Mohammad Ghodsi . 269

On Some Weighted Satisfiability and Graph Problems
Stefan Porschen . 278

On the Security and Composability of the One Time Pad
Dominik Raub, Rainer Steinwandt, Jörn Müller-Quade 288

Lower Bounds on the OBDD Size of Graphs of Some Popular Functions
Daniel Sawitzki . 298

XML-Based Declarative Access Control
Robert Steele, William Gardner, Tharam S. Dillon,
Abdelkarim Erradi . 310

VCD: A Visual Formalism for Specification of Heterogeneous Software
Architectures

David Šafránek, Jiř́ı Šimša . 320

Cost-Constrained Minimum-Delay Multicasting
Satoshi Tayu, Turki Ghazi Al-Mutairi, Shuichi Ueno 330

Ontology-Based Inconsistency Management of Software Requirements
Specifications

Xuefeng Zhu, Zhi Jin . 340

The Best Student Paper

Suffix Tree Based Data Compression
Martin Senft . 350

XIV Table of Contents

Short Contributed Papers

Tier Aspect Model Based on Updatable Views
Rados�law Adamus, Kazimierz Subieta . 360

Well-Founded Metamodeling for Model-Driven Architecture
Liliana Favre . 364

Stepwise Optimization Method for k -CNN Search for Location-Based
Service

Jun Feng, Naoto Mukai, Toyohide Watanabe . 368

An Approach for Integrating Analysis Patterns and Feature Diagrams
into Model Driven Architecture

Roman Filkorn, Pavol Návrat . 372

Outerplanar Crossing Numbers of 3-Row Meshes, Halin Graphs and
Complete p-Partite Graphs

Radoslav Fulek, Hongmei He, Ondrej Sýkora, Imrich Vrťo 376

Fast Bit-Vector Algorithms for Approximate String Matching Under
Indel Distance

Heikki Hyyrö, Yoan Pinzon, Ayumi Shinohara . 380

Feature Selection by Reordering
Marcel Jirina, Marcel Jirina Jr. 385

A Management Scheme for the Basic Types in High Level Languages
Fritz Mayer-Lindenberg . 390

Bayesian Networks in Software Maintenance Management
Ana C.V. de Melo, Adilson de J. Sanchez . 394

A Multiagent System Aiding Information Retrieval in Internet Using
Consensus Methods

Ngoc Thanh Nguyen, Adam Blazowski, Michal Malowiecki 399

Interval-Valued Data Structures and Their Application to e-Learning
Adam Niewiadomski . 403

Boolean Functions with a Low Polynomial Degree and Quantum Query
Algorithms

Raitis Ozols, Rūsiņš Freivalds, Jevgeņijs Ivanovs, El̄ına Kalniņa,
Lelde Lāce, Masahiro Miyakawa, Hisayuki Tatsumi,
Daina Taimiņa . 408

Table of Contents XV

Representation of Extended RBAC Model Using UML Language
Aneta Poniszewska-Maranda, Gilles Goncalves, Fred Hemery 413

A Methodology for Writing Class Contracts
Nele Smeets, Eric Steegmans . 418

Volumes of 3D Drawings of Homogenous Product Graphs
Lubomir Torok . 423

Author Index . 427

Discovering Treewidth

Hans L. Bodlaender

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

hansb@cs.uu.nl

Abstract. Treewidth is a graph parameter with several interesting the-
oretical and practical applications. This survey reviews algorithmic re-
sults on determining the treewidth of a given graph, and finding a tree
decomposition of small width. Both theoretical results, establishing the
asymptotic computational complexity of the problem, as experimental
work on heuristics (both for upper bounds as for lower bounds), prepro-
cessing, exact algorithms, and postprocessing are discussed.

1 Introduction

About a quarter of a century, the notion of treewidth has now played a role
in many investigations in algorithmic graph theory. While for a long time, the
use of treewidth was limited to theoretical investigations, and it sometimes was
believed that it could not play a role in practical applications, nowadays there
is a growing tendency to use it in an actual applied setting.

An interesting example of this practical use of treewidth can be found in the
work by Koster, van Hoesel, and Kolen [63], where tree decompositions are used
to solve frequency assignment instances from the CALMA project, and other
partial constraint satisfaction problems. The most frequent used algorithm to
solve the inference problem for probabilistic, or Bayesian belief networks (often
used in decision support systems) uses tree decompositions [67]. See e.g., also
[1, 39].

Graphs of bounded treewidth appear in many different contexts. For an
overview of graph theoretic notions that are equivalent to treewidth, or from
which bounded treewidth can be derived, see [12]. Many probabilistic networks
appear to have small treewidth in practice. Yamagucki, Aoki, and Mamitsuka
[91] have computed the treewidth of 9712 chemical compounds from the LIG-
AND database, and discovered that all but one had treewidth at most three;
the one exception had treewidth four. Thorup [86] showed that the control flow
graph of goto-free programs, written in one of a number of common impera-
tive programming languages (like C, Pascal) have treewidth bounded by small
constants. See also [45].

Many problems can be solved in linear or polynomial time when the treewidth
of the input graph is bounded. Usually, the first step of such an algorithm is to
find a tree decomposition of small width. In this paper, we give an overview of

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 H.L. Bodlaender

algorithms for finding such tree decompositions. Nowadays, much work has been
done on this topic, and we now have a rich theory, and intriguing experimental
approaches.

After some preliminaries in Section 2, we survey exact algorithms (Sec-
tion 3), approximation algorithms and upper bound heuristics (Section 4), lower
bound heuristics (Section 5), and preprocessing and postprocessing methods
(Section 6).

2 Preliminaries

The notion of treewidth was introduced by Robertson and Seymour in their work
on graph minors [77]. Equivalent notions were invented independently, e.g., a
graph has treewidth at most k, if and only if it is a partial k-tree. See [12] for
an overview of notions equivalent to or related to treewidth. In this paper, we
assume graphs to be undirected and simple. Many results also hold for directed
graphs, and often they can be generalised to hypergraphs. n = |V | denotes the
number of vertices of graph G = (V, E), m = |E| its number of edges.

Definition 1. A tree decomposition of a graph G = (V, E) is a pair ({Xi, i ∈
I}, T = (I, F)), with {Xi, i ∈ I} a collection of subsets of V (called bags), and
T = (I, F) a tree, such that

1.
⋃

i∈I Xi = V .
2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
3. For all v ∈ V , Tv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

The width of a tree decomposition ({Xi, i ∈ I}, T = (I, F)) is maxi∈I |Xi| − 1.
The treewidth of G is the minimum width over all tree decompositions of G.

b
c

c

d

d
f

c
e f

d
f g

a
b

a

b

c d

e f g

Fig. 1. A graph and a tree decomposition of width 2

Having a tree decomposition of small width in general implies that the graph
has many separators of small size. E.g., consider a tree decomposition ({Xi, i ∈
I}, T = (I, F)), and choose a node r ∈ I as root of T . Consider some node i ∈ I,
and let Gi be the subgraph of G induced by the set Vi of vertices in sets Xj with
j = i or j is a descendant of i. Then, the definition of tree decomposition implies
that all vertices in Gi that have a neighbour in G that does not belong to Gi

belong to Xi. Hence, Xi separates all vertices in Vi−Xi from all vertices in V −Vi.
This property amongst others enables many dynamic programming algorithms

Discovering Treewidth 3

on graphs of bounded treewidth. A useful lemma on tree decompositions (which
can be seen as a rephrasing of the Helly property for trees, see [44, 22] is the
following.

Lemma 1. Let ({Xi, i ∈ I}, T = (I, F)) be a tree decomposition of G. Let W
be a clique in G. Then there is an i ∈ I with W ⊆ Xi.

There are several equivalent definitions of the notion of treewidth. The various
algorithms for determining the treewidth and finding tree decompositions are
based upon different such notions. We review here those that we use later in this
paper.

A graph G = (V, E) is chordal, if and only if each cycle in G of length
at least four has a chord, i.e., an edge between non-successive vertices in the
cycle. There are two equivalent definitions of chordality that we will use. A
perfect elimination scheme of a graph G = (V, E) is an ordering of the vertices
v1, . . . , vn, such that for all vi ∈ V , its higher numbered neighbours form a clique,
i.e., for j1 > i, j2 > i, if {vi, vj1} ∈ E and {vi, vj2} ∈ E, then {vj1 , vj2} ∈ E.
A graph G = (V, E) is the intersection graph of subtrees of a tree, if and only if
there is a tree T = (I, F) and for each vertex v ∈ V a subtree Tv of T , such that
for all v, w ∈ V , v �= w: {v, w} ∈ E, if and only if the trees Tv and Tw have at
least one vertex in common.

Theorem 1 (See [42, 44]). Let G = (V, E) be a graph, The following state-
ments are equivalent.

1. G is a chordal graph.
2. G has a perfect elimination scheme.
3. G is the intersection graph of subtrees of a tree.

A triangulation of a graph G = (V, E) is a chordal graph H = (V, F) that
contains G as a subgraph: E ⊆ F . A triangulation H = (V, F) is a minimal
triangulation, when there does not exist a triangulation H ′ = (V, F ′) with E ⊆
F ′ ⊂ F (F ′ �= F).

Given a tree decomposition ({Xi, i ∈ I}, T = (I, F)) of G, we can build
corresponding triangulation H = (V, F): add to G an edge between each non-
adjacent pair of vertices {v, w} such that there is an i ∈ I with v, w ∈ Xi. I.e.,
each bag Xi is turned into a clique. The graph H thus obtained is the intersection
graph of subtrees Tv = T [{i ∈ I | v ∈ Xi}] of T , thus chordal. The maximum
cliquesize of H is exactly one larger than the width of the tree decomposition
(compare with Lemma 1.)

Lemma 2. The treewidth of a graph G equals the minimum over all triangula-
tions H of G of the maximum clique size of H minus one.

We can also build a tree decomposition from an ordering v1, . . . , vn of the
vertices of the graph G. We first construct a triangulation H of G by the fol-
lowing fill-in procedure: initially, H = G, and then for i = 1 to n, we add to H,
edges between yet non-adjacent higher numbered neighbours of vi. After having

4 H.L. Bodlaender

done this, v1, . . . , vn is a perfect elimination scheme of H; the model of H as
intersection graph of subtrees of a tree can be easily transformed to a tree de-
composition of H and of G. Its width equals the maximum over all vertices of
its higher numbered neighbours in the ordering in H.

3 Exact Algorithms

The Treewidth problem: given a graph G, and an integer k, decide if the
treewidth of G is at most k, is NP-complete [3]. This unsettling fact does not
prevent us from wanting to compute the treewidth of graphs, and fortunately,
in many cases, there are methods to effectively obtain the treewidth of given
graphs.

Special Graph Classes. There are many results on the complexity of treewidth
when restricted to special graph classes. We mention here a few of these. A highly
interesting recent result was obtained by Bouchitté and Todinca, who found an
algorithm to determine the treewidth of a graph in time, polynomial in the
number of its minimal separators [29, 28]. Many graph classes have the property
that each graph in the class has a polynomial number of minimal separators,
e.g., permutation graphs, weakly chordal graphs.

Other polynomial time algorithms for treewidth for special graph classes can
be found in e.g., [16, 23, 31, 32, 38, 59, 58, 60]. NP-completeness results appear
amongst others in [24, 46]. See also [72]. Other older results are surveyed in [9].

Exponential Time Algorithms. Based upon the results from Bouchitté and Tod-
inca [29, 28], Fomin et al. [41] found an exact algorithm for treewidth that runs
in time O∗(1.9601n) time. (See [90] for the O∗ notation and an introduction to
exponential time algorithms.)

Algorithms with a running time of O∗(2n) are easier to obtain: one can show
that the algorithm of [3] has this time, or build a dynamic programming algo-
rithm following a technique first established for TSP by Held and Karp [49].

For small graphs, the treewidth can be computed in practice using branch
and bound. Experiments have been published by Gogate and Dechter [43]. The
algorithm searches for an ordering of the vertices that corresponds to a tree
decomposition of small width, see Section 2, i.e., at each step, we select the
next vertex in the ordering. Gogate and Dechter establish several rules to cut
off branches during branch and bound. The algorithm can also be used as a
heuristic, by stopping the branch and bound algorithm at a specific time and
reporting the best solution found so far.

Fixed Parameter Cases. As we often want to use a tree decomposition for run-
ning a dynamic programming algorithm that is exponential in the width, we often
want to test if the treewidth is smaller than some given constant k. Much work

Discovering Treewidth 5

has been done of this fixed parameter case of treewidth. Here we let k denote
the constant for which we want to test if the treewidth is at most k.

The first polynomial time algorithm for the problem was given by Arnborg,
Corneil, and Proskurowski [3]. Their algorithm runs in O(nk+2) time. A mod-
ification of this algorithm has been proposed and successfully experimentally
evaluated by Shoikhet and Geiger [83].

Downey and Fellows introduced the theory of fixed parameter tractability. A
problem with input parameter k and input size n is fixed parameter tractable,
when there is a function f and a constant c, such that there is an algorithm that
solves the problem in f(k) · nc time, (in contrast to algorithms using Ω(ng(k))
time for some increasing function g). See [40]. The first result that showed that
treewidth is fixed parameter tractable, i.e., solvable in O(nc) time for some con-
stant c, for fixed treewidth k, was obtained by Robertson and Seymour [77, 78].
This result was fully non-constructive: from the deep results of their graph mi-
nor theory, one gets a non-constructive proof that there exists a characterisation
that can be tested in O(n2) time. Later results, by Lagergren [64], Reed [76],
Lagergren and Arnborg [65], Bodlaender and Kloks [15], and Bodlaender [10]
improved upon either the constructivity or the running time. Finally, in [11], a
linear time algorithm was given that checks if the treewidth is at most k, and
if so, outputs the corresponding tree decomposition. That algorithm uses about
O(k3) calls to the dynamic programming algorithm from [15], but the hidden
constant in the ‘O’-notation of this algorithm is horrendous, even for small values
of k. Röhrig [79] has experimentally evaluated the linear time algorithm from
[11]. Unfortunately, this evaluation shows that the algorithm uses too much time
even for very small values of k (e.g., when k = 4.) A parallel variant of the al-
gorithm from [11] was given by Bodlaender and Hagerup [14]. A variant with
O(k2) calls to the algorithm of [15] was given by Perković and Reed [73].

The linear time algorithm for fixed k is attractive from a theoretical point
of view: in many cases, an algorithm exploiting small treewidth would use the
algorithm as a first step. From a practical point of view, the algorithm is useless
however, and the quest remains for algorithms that are efficient from the imple-
mentation viewpoint. Fortunately, several heuristics appear to perform well in
practice, as we will see in the next section.

Also, for very small values of k, there are special algorithms. Testing if the
treewidth is one is trivially linear (the graph must be a forest), a graph has
treewidth at most two, if and only if each biconnected component is a series
parallel graph (see e.g., [25]), and testing if a graph is series parallel can be
done in linear time by the algorithm of Valdes, Tarjan, and Lawler [88]. Arnborg
and Proskurowski [4] give a set of six reduction rules, such that a graph has
treewidth at most three, if and only if it can be reduced to the empty graph by
means of these rules. These rules can be implemented such that the algorithm
runs in linear time, see also [70]. Experiments show that these algorithms run
very fast in practice. A more complicated linear time algorithm for testing if the
treewidth of a graph is at most 4 has been given by Sanders [81]. As far as I
know, this algorithm has not yet been tried out in practice.

6 H.L. Bodlaender

4 Approximation Algorithms and Upper Bound
Heuristics

There are many algorithms that approximate the treewidth. We can distinguish
a number of different types, depending on whether the algorithm is polynomial
for all values of k, and whether the algorithm has a guaranteed performance.

Polynomial Time Approximation Algorithms with a Performance Ratio. We first
look at algorithms that are polynomial, even when k is not bounded, and that
give a guarantee on the quality of the output. The first such approximation
algorithm for treewidth was given in [13]. This algorithm gives tree decomposi-
tions with width at most O(log n) times the optimal treewidth. (See also [57].)
It builds a tree decomposition by repeatedly finding balanced separators in the
graph and subgraphs of it. Bouchitté et al. [27] and Amir [2] recently improved
upon this result, giving polynomial time approximation algorithms with ratio
O(log k) , i.e., the algorithms output a tree decomposition of width O(k log k)
when the treewidth of the input graph is k. It is a long standing and apparently
very hard open problem whether there exist a polynomial time approximation
algorithm for treewidth with a constant performance ratio.

Fixed Parameter Approximation Algorithms. There are also several approxima-
tion algorithms for treewidth that run in time, exponential in k. They either
give a tree decomposition of width at most ck (for some constant c), or tell that
the treewidth is more than k. See [2, 6, 64, 76, 78].

Upper Bound Heuristics. Many of the heuristics that have been proposed and
are used to find tree decompositions of small width do not have a guarantee
on their performance. However, amongst these, there are many that appear to
perform very well in many cases.

A large class of these heuristics is based upon the same principle. As discussed
in Section 2, a tree decomposition can be build from a linear ordering of the
vertices. Thus, we can build in some way a linear ordering of the vertices, run
the fill-in procedure, and turn the triangulation into a tree decomposition. Often,
one already adds fill-in edges during the construction of the linear order.

A very simple heuristic of this type is the Minimum Degree heuristic: we re-
peatedly select the vertex v with the minimum number of unselected neighbours
as the next vertex in the ordering, and turn the set of its unselected neigh-
bours into a clique, then temporarily remove v. The Minimum Fill-in heuristic
is similar, but now we select a vertex which gives the minimum number of added
fill-in edges for the current step. More complicated rules for selecting next ver-
tices have been proposed by Bachoore and Bodlaender [5], and by Clautiaux et
al. [34, 33]. In some cases, improvements are thus made upon the simpler Mini-
mum Degree or Minimum Fill-in heuristics. Also, sometimes orderings generated
by algorithms originally invented for chordal graph recognition ([80, 85, 7] have
been used as linear ordering to generate the tree decomposition from. These

Discovering Treewidth 7

tend to give tree decompositions with larger width. See [62] for an experimental
evaluation of several of these heuristics.

These heuristics can also be described using tree decompositions only: Select
some vertex v (according to the criteria at hand, e.g., the vertex of minimum
degree). Build the graph G′, by turning the set of neighbours N(v) of v into a
clique, and then removing v. Recursively, compute a tree decomposition of G′.
By Lemma 1, there must be a bag i∗ with N(v) ⊆ Xi. Now, add a new node iv
to G, with Xiv

= {v} ∪ N(v), and make iv adjacent to i∗ in the tree. One can
check that this gives a tree decomposition of G.

A different type of heuristic was proposed by Koster [61]. The main idea of
the heuristic is to start with any tree decomposition, e.g., the trivial one where all
vertices belong to the same bag, and then stepwise refine the heuristics, i.e., the
heuristic selects a bag and splits it into smaller bags, maintaining the properties
of tree decomposition.

There are several algorithms that, given a graph G, make a minimal trian-
gulation of G. While not targeted at treewidth, such algorithms can be used
as treewidth heuristic. Recently, Heggernes, Telle, and Villanger [47] found an
algorithm for this problem that uses o(n2.376) time; many other algorithms use
O(nm) time.

See [87] for an online database with some experimental results.

Heuristics with Local Search Methods. Some work has been done on using stochas-
tic local search methods to solve the treewidth problem or related problems.
Kjærulff [56] uses simulated annealing to solve a problem related to treewidth.
Genetic algorithms have been used by Larrañaga et al. [66]. Clautiaux et al. [33]
use tabu search for the treewidth problem. The running times of these meta
heuristics is significantly higher, but good results are often obtained.

Approximation Algorithms for Special Graph Classes. Also, approximation al-
gorithms have been invented with a guarantee on the performance for special
graph classes, e.g., a ratio of 2 can be obtained for AT-free graphs [30], and a
constant ratio can be obtained for graphs with bounded asteroidal number [27].

5 Lower Bound Heuristics

It is for several reasons interesting to have good lower bound heuristics for
treewidth. They can be used in a subroutines in a branch and bound algorithm
(as, e.g., is done in [43]), or in an upper bound heuristic (e.g., as part of the rule
to select the next vertex of the vertex ordering [33]), and inform us about the
quality of upper bound heuristics. Also, when a lower bound for the treewidth is
too high, it may tells us that it is not useful to aim at a dynamic programming
algorithm solving a problem with tree decompositions.

It is easy to see that the minimum degree of a vertex in G, and the maximum
clique size of G are lower bounds for the treewidth. These bounds are often not
very good, and the maximum clique size is NP-hard to compute. An improvement

8 H.L. Bodlaender

to these bounds is made with the degeneracy: the maximum over all subgraphs
G′ of G of the minimum vertex degree of G′ [84, 68]. The degeneracy can be
easily computed: repeatedly remove a vertex of minimum degree from the graph,
and then report the maximum over the degrees of the vertices when they were
removed.

An improvement to the degeneracy can be obtained by instead of removing a
vertex, contracting it to one of its neighbours. This idea was found independently
by Bodlaender, Koster, and Wolle [20], and by Gogate and Dechter [43]. The
MMD+ heuristic thus works as follows: set � = 0, then repeat until G is empty:
find a vertex v of minimum degree d in G; set � = max(�, d); contract v to a
neighbour (or remove v if v is isolated). In [20], different rules to select the vertex
to contract to are explored. The heuristic to select the neighbour of v of smallest
degree performs reasonably well, but the heuristic to select the neighbour w of
v such that v and w have the smallest number of common neighbours usually
gives better lower bounds. (When v and w have a common neighbour x, then
contracting v and w causes the two edges {v, x} and {w, x} to become the same
edge. The rule thus tries to keep the graph as dense as possible.)

In [20], the related graph parameter of contraction degeneracy: the maximum
over all minors G′ of G of the minimum vertex degree of G′ is introduced and
studied. Computing the contraction degeneracy is NP-hard [20], but it can be
computed in polynomial time on cographs [26].

A different lower bound rule, based on the Maximum Cardinality Search algo-
rithm has been invented by Lucena [69]. Maximum Cardinality Search (originally
invented as a chordal graph recognition algorithm by Tarjan and Yannakakis
[85]) works as follows. The vertices of the graph are visited one by one. MCS
starts at an arbitrary vertex, and then repeatedly visits an unvisited vertex which
has the maximum number of visited neighbours. Lucena showed that when MCS
visits a vertex that has at that point k visited neighbours, then the treewidth is
at least k.

So, we can get a treewidth lower bound by constructing an MCS ordering of
the vertices of G, and then reporting the maximum over all vertices of the number
of its visited neighbours when it was visited. This bound is always at least the
degeneracy (if G has a subgraph G′ with minimum vertex degree k, then when the
last vertex from G′ is visited, it has at least k visited neighbours). A theoretical
and experimental analysis of this lower bound was made by Bodlaender and
Koster [17]. E.g., it is NP-hard to find an MCS ordering that maximises the
yielded lower bound.

Other lower bounds based on the degree are also possible. Ramachandra-
murthi [74, 75] showed that for all graphs that are not complete, the minimum
over all non-adjacent pairs of vertex v and w of the maximum of the degree of
v and w is a lower bound for the treewidth of G. (This bound can be shown as
follows. Consider a tree decomposition of G, and repeatedly remove leaf nodes
i from T with neighbour j in T with Xi ⊆ Xj . If we remain with a tree decom-
position with one bag, the claim clearly holds. Otherwise, T has at least two
leaf nodes, and each bag of a leaf node contains a vertex whose neighbours are

Discovering Treewidth 9

all in the same leaf bag.) This lower bound usually is not very high, but when
combined with contraction, it can give small improvements to the MMD+ lower
bound. An investigation of this method, and other methods combining degree
based lower bounds with contraction is made in [21].

An interesting technique to obtain better lower bounds was introduced by
Clautiaux et al. in [34]. It uses the following result.

Lemma 3. Let v, w be two vertices in G, and let v and w have at least k + 2
disjoint neighbours (vertex disjoint paths between them). Then G has treewidth
at most k, if and only if G + {v, w} has treewidth at most k.

The neighbour or path improved graph of G is the graph obtained by adding
edges between all pairs of vertices with at least k + 2 common neighbours (or
vertex disjoint paths). The method of [34] now can be described as follows. Set �
to some lower bound on the treewidth of input graph G. Compute the (neighbour
or path) improved graph G′ of G (with k = �). Run some treewidth lower bound
algorithm on G′. If this algorithm gives a lower bound larger than �, then the
treewidth of G is at least �+1, and we add one to �, and repeat, until no increase
to � is obtained. In [34], the degeneracy is used as lower bound subroutine, but
any other lower bound can be used. Experimental results of this type can be
found in [20]. The method gives significant increases to the lower bounds for
many graphs, but also costs much time; the version where we use the neighbour
improved graph gives smaller bounds but uses also less time when compared to
the path improved graph. In [20], a heuristic is proposed, where edge contraction
steps are alternated with improvement steps. This algorithm works well for small
instances, but appears to use (too) much time on larger instances.

6 Preprocessing and Postprocessing

6.1 Preprocessing

There are several methods for preprocessing a graph before running an algorithm
for treewidth on it. With preprocessing, we hope to decrease the size of the input
graph. The algorithm for treewidth thus often runs on a smaller instance, and
hence can be much faster. E.g., we first preprocess the graph, and then run a
slow exact algorithm on the reduced instance.

Reduction Rules. Bodlaender et al. [19] give several reduction rules that are
safe for treewidth. Besides a graph (initially the input graph), we maintain an
integer variable low that is a lower bound for the treewidth of the input graph.
We have that initially low ≤ tw(G), (e.g., low= 0. Each reduction rule takes
G and low, and rewrites this to a smaller graph G′, with possibly an updated
value of low. A rule is safe, if, whenever we can rewrite a graph G with variable
low to G′ and low’, we have max(tw(G), low) = max(tw(G′), low′). It follows
that when G′′ and low” are obtained from G with a series of applications of
safe rules, then the treewidth of G equals max(tw(G′′), low′′). The rules in [19]

10 H.L. Bodlaender

are taken from the algorithm from [4] to recognise graphs of treewidth at most
three, or generalisations of these. Two of these rules are the simplicial rule:
remove a vertex of degree d whose neighbours form a clique, and set low to
max(d, low), and the almost simplicial rule: when v is a vertex of degree d ≤ low
whose neighbourhood contains a clique of size d − 1, then add edges between
non-adjacent neighbours of v and remove v. Experiments show that in many
instances from practical problems, significant reductions can be obtained with
these reduction rules [19]. Generalisations of the rules were given by van den
Eijkhof and Bodlaender [89].

Safe Separators. A set of vertices S ⊆ V is a separator in a graph G = (V, E), if
G[V −S] contains more than one connected component. A separator is inclusion
minimal, when it does not contain another separator of G as proper subset.
A separator S in G is safe for treewidth, when the treewidth of G equals the
maximum over all connected components W of G[V −S] of the treewidth of the
graph G[W ∪ S] + clique(S) (i.e., the graph obtained with vertices V ∪ S, and
edges between adjacent vertices in G, and each pair of vertices in S).

Thus, when we have a safe (for treewidth) separator S in G, we can split G
into the parts of the form G[W ∪S]+ clique(S) for all connected components W
of G[V − S], and compute for each such part the treewidth separately. Hence,
safe separators can be used for preprocessing for treewidth.

There are several types of safe separators that can be found quickly. For in-
stance, every separator that is a clique is safe (see [71]), and clique separators
can be found in O(nm) time. Other safe separators are given in [18], e.g., inclu-
sion minimal separators of size r that contain a clique of size r− 1; all inclusion
separators of size two; minimum size separators S of size three such that at least
two connected components of G[V − S] contain at least two vertices. See also
[18] for an experimental evaluation of the use of safe separators.

6.2 Postprocessing

Once we have found a tree decomposition of G, it sometimes is possible to modify
the tree decomposition slightly to obtain one with a smaller width. This can be
best explained by looking at the triangulation of G that corresponds to the tree
decomposition.

Many heuristics yield tree decompositions whose corresponding triangula-
tions are not always minimal triangulations, e.g., the minimum degree heuristic.
(A few heuristics guarantee that the triangulation is always minimal.)

There are several algorithms, that, given a graph G = (V, E), and a triangu-
lation H = (V, F) of G, find a minimal triangulation H ′ = (V, F ′) of G that is a
subgraph of H: E ⊆ F ′ ⊆ F [8, 37, 48]. So, we can use the following postprocess-
ing step when given a tree decomposition: build the corresponding triangulation,
find a minimal triangulation (e.g., with an algorithm from [8, 48]) and then turn
this minimal triangulation back into a tree decomposition.

Discovering Treewidth 11

7 Conclusions

There are several interesting notions that are related to treewidth, and that
obtained also much attention in the past years, e.g., pathwidth, cliquewidth
(see e.g. [36]). Very closely related to treewidth is the notion of branchwidth
(treewidth and branchwidth differ approximately by at most a factor of 1.5).
The branchwidth of planar graphs can be computed in polynomial time [82],
and thus it is intriguing that the corresponding problem for treewidth is still
open. Interesting experimental work on branchwidth has been done by Hicks
[53, 54, 55, 51, 52, 50]. Cook and Seymour [35] used branch decompositions for
solving the travelling salesman problem.

The many theoretic and experimental results on the treewidth problem show
that finding a tree decomposition of small width is far from hopeless, even while
the problem itself is NP-hard. Upper and lower bound heuristics appear to give
good results in many practical cases, which can be further improved by post-
processing; preprocessing combined with cleverly designed exact algorithms can
solve many small instances exactly. There still are several challenges. Two theo-
retical questions are open for a long time, and appear to be very hard: Is there an
approximation algorithm for treewidth with a constant performance ratio (as-
suming P �= NP)? Does there exist a polynomial time algorithm for computing
the treewidth of planar graphs, or is this problem NP-hard? Also, the quest for
better upper and lower bound heuristics, more effective preprocessing methods,
etc. remains.

Acknowledgement

I want to express my gratitude to the many colleagues who collaborated with me
on the research on treewidth and other topics, helped me with so many things,
and from who I learned so much in the past years. I apologise to all whose work
should have been included in this overview but was inadvertingly omitted by
me.

References

1. J. Alber, F. Dorn, and R. Niedermeier. Experimental evaluation of a tree decom-
position based algorithm for vertex cover on planar graphs. To appear in Discrete
Applied Mathematics, 2004.

2. E. Amir. Efficient approximations for triangulation of minimum treewidth. In
Proc. 17th Conference on Uncertainty in Artificial Intelligence, pages 7–15, 2001.

3. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

4. S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-
trees. SIAM J. Alg. Disc. Meth., 7:305–314, 1986.

5. E. Bachoore and H. L. Bodlaender. New upper bound heuristics for treewidth.
Technical Report UU-CS-2004-036, Institute for Information and Computing Sci-
ences, Utrecht University, Utrecht, the Netherlands, 2004.

12 H.L. Bodlaender

6. A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal
clique trees. Artificial Intelligence, 125:3–17, 2001.

7. A. Berry, J. Blair, P. Heggernes, and B. Peyton. Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica, 39:287–298, 2004.

8. J. R. S. Blair, P. Heggernes, and J. Telle. A practical algorithm for making filled
graphs minimal. Theor. Comp. Sc., 250:125–141, 2001.

9. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23,
1993.

10. H. L. Bodlaender. Improved self-reduction algorithms for graphs with bounded
treewidth. Disc. Appl. Math., 54:101–115, 1994.

11. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

12. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc., 209:1–45, 1998.

13. H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and minimum elimination tree height. J. Algo-
rithms, 18:238–255, 1995.

14. H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput., 27:1725–1746, 1998.

15. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms, 21:358–402, 1996.

16. H. L. Bodlaender, T. Kloks, D. Kratsch, and H. Mueller. Treewidth and minimum
fill-in on d-trapezoid graphs. J. Graph Algorithms and Applications, 2(5):1–23,
1998.

17. H. L. Bodlaender and A. M. C. A. Koster. On the maximum cardinality search
lower bound for treewidth, 2004. Extended abstract to appear in proceedings WG
2004.

18. H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. In Pro-
ceedings 6th Workshop on Algorithm Engineering and Experiments ALENEX04,
pages 70–78, 2004.

19. H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der
Gaag. Pre-processing for triangulation of probabilistic networks. In J. Breese and
D. Koller, editors, Proceedings of the 17th Conference on Uncertainty in Artificial
Intelligence, pages 32–39, San Francisco, 2001. Morgan Kaufmann.

20. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth
lower bounds. In S. Albers and T. Radzik, editors, Proceedings 12th Annual Euro-
pean Symposium on Algorithms, ESA2004, pages 628–639. Springer, Lecture Notes
in Computer Science, vol. 3221, 2004.

21. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Degree-based treewidth lower
bounds. Paper in preparation, 2004.

22. H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of cographs.
SIAM J. Disc. Math., 6:181–188, 1993.

23. H. L. Bodlaender and U. Rotics. Computing the treewidth and the minimum fill-in
with the modular decomposition. Algorithmica, 36:375–408, 2003.

24. H. L. Bodlaender and D. M. Thilikos. Treewidth for graphs with small chordality.
Disc. Appl. Math., 79:45–61, 1997.

25. H. L. Bodlaender and B. van Antwerpen-de Fluiter. Parallel algorithms for series
parallel graphs and graphs with treewidth two. Algorithmica, 29:543–559, 2001.

26. H. L. Bodlaender and T. Wolle. Contraction degeneracy on cographs. Techni-
cal Report UU-CS-2004-031, Institute for Information and Computing Sciences,
Utrecht University, Utrecht, the Netherlands, 2004.

Discovering Treewidth 13

27. V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca. On treewidth approximations.
Disc. Appl. Math., 136:183–196, 2004.

28. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31:212–232, 2001.

29. V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph.
Theor. Comp. Sc., 276:17–32, 2002.

30. V. Bouchitté and I. Todinca. Approximating the treewidth of at-free graphs. Disc.
Appl. Math., 131:11–37, 2003.

31. H. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum fill
in and tree width for distance hereditary graphs. Disc. Appl. Math., 99:367–400,
2000.

32. H. Broersma, T. Kloks, D. Kratsch, and H. Müller. A generalization of AT-free
graphs and a generic algorithm for solving triangulation problems. Algorithmica,
32:594–610, 2002.

33. F. Clautiaux, S. N. A. Moukrim, and J. Carlier. Heuristic and meta-heuristic
methods for computing graph treewidth. RAIRO Oper. Res., 38:13–26, 2004.

34. F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre. New lower and upper bounds
for graph treewidth. In J. D. P. Rolim, editor, Proceedings International Work-
shop on Experimental and Efficient Algorithms, WEA 2003, pages 70–80. Springer
Verlag, Lecture Notes in Computer Science, vol. 2647, 2003.

35. W. Cook and P. D. Seymour. Tour merging via branch-decomposition. Informs J.
on Computing, 15(3):233–248, 2003.

36. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique width. Theor. Comp. Sc., 33:125–150, 2000.

37. E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In Pro-
ceedings 23rd International Workshop on Graph-Theoretic Concepts in Computer
Science WG’97, pages 132–143. Springer Verlag, Lecture Notes in Computer Sci-
ence, vol. 1335, 1997.

38. E. Dahlhaus. Minimum fill-in and treewidth for graphs modularly decompos-
able into chordal graphs. In Proceedings 24th International Workshop on Graph-
Theoretic Concepts in Computer Science WG’98, pages 351–358. Springer Verlag,
Lecture Notes in Computer Science, vol. 1517, 1998.

39. R. Dechter. Bucket elimination: a unifying framework for reasoning. Acta Infor-
matica, 113:41–85, 1999.

40. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1998.
41. F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for

treewidth and minimum fill-in. In Proceedings of the 31st International Colloquium
on Automata, Languages and Programming, pages 568–580, 2004.

42. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Comb. Theory Series B, 16:47–56, 1974.

43. V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In
proceedings UAI’04, Uncertainty in Artificial Intelligence, 2004.

44. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

45. J. Gustedt, O. A. Mæhle, and J. A. Telle. The treewidth of Java programs. In
D. M. Mount and C. Stein, editors, Proceedings 4th International Workshop on
Algorithm Engineering and Experiments, pages 86–97. Springer Verlag, Lecture
Notes in Computer Science, vol. 2409, 2002.

46. M. Habib and R. H. Möhring. Treewidth of cocomparability graphs and a new
order-theoretic parameter. ORDER, 1:47–60, 1994.

14 H.L. Bodlaender

47. P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in
time O(nα log n) = o(n2.376). To appear in proceedings SODA’05, 2005.

48. P. Heggernes and Y. Villanger. Efficient implementation of a minimal triangulation
algorithm. In R. Möhring and R. Raman, editors, Proceedings of the 10th Annual
European Symposium on Algorithms, ESA’2002, pages 550–561. Springer Verlag,
Lecture Notes in Computer Science, vol. 2461, 2002.

49. M. Held and R. Karp. A dynamic programming approach to sequencing problems.
J. SIAM, 10:196–210, 1962.

50. I. V. Hicks. Graphs, branchwidth, and tangles! Oh my! Working paper.
http://ie.tamu.edu/People/faculty/Hicks/default.htm.

51. I. V. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS Journal
on Computing (to appear).

52. I. V. Hicks. Planar branch decompositions II: The cycle method. INFORMS
Journal on Computing (to appear).

53. I. V. Hicks. Branch Decompositions and their Applications. Ph. d. thesis, Rice
University, Houston, Texas, 2000.

54. I. V. Hicks. Branchwidth heuristics. Congressus Numerantium, 159:31–50, 2002.
55. I. V. Hicks. Branch decompositions and minor containment. Networks, 43:1–9,

2004.
56. U. Kjærulff. Optimal decomposition of probabilistic networks by simulated an-

nealing. Statistics and Computing, 2:2–17, 1992.
57. T. Kloks. Treewidth. Computations and Approximations. Lecture Notes in Com-

puter Science, Vol. 842. Springer-Verlag, Berlin, 1994.
58. T. Kloks. Treewidth of circle graphs. Int. J. Found. Computer Science, 7:111–120,

1996.
59. T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs. J. Algorithms,

19:266–281, 1995.
60. T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of aster-

oidal triple-free graphs. Theor. Comp. Sc., 175:309–335, 1997.
61. A. M. C. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis,

Univ. Maastricht, Maastricht, the Netherlands, 1999.
62. A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Com-

putational experiments. In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors,
Electronic Notes in Discrete Mathematics, volume 8. Elsevier Science Publishers,
2001.

63. A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial
constraint satisfaction problems with tree decomposition. Networks, 40:170–180,
2002.

64. J. Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. J.
Algorithms, 20:20–44, 1996.

65. J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a finite
congruence. In Proceedings of the 18th International Colloquium on Automata,
Languages and Programming, pages 532–543. Springer Verlag, Lecture Notes in
Computer Science, vol. 510, 1991.

66. P. Larrañaga, C. M. H. Kuijpers, M. Poza, and R. H. Murga. Decomposing
Bayesian networks: triangulation of the moral graph with genetic algorithms.
Statistics and Computing (UK), 7(1):19–34, 1997.

67. S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. The Journal of the
Royal Statistical Society. Series B (Methodological), 50:157–224, 1988.

Discovering Treewidth 15

68. D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of Mathe-
matics, 22:1082–1096, 1970.

69. B. Lucena. A new lower bound for tree-width using maximum cardinality search.
SIAM J. Disc. Math., 16:345–353, 2003.

70. J. Matoušek and R. Thomas. Algorithms for finding tree-decompositions of graphs.
J. Algorithms, 12:1–22, 1991.

71. K. G. Olesen and A. L. Madsen. Maximal prime subgraph decomposition of
Bayesian networks. IEEE Trans. on Systems, Man, and Cybernetics, Part B,
32:21–31, 2002.

72. A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal
graph embeddings. Disc. Appl. Math., 79:171–188, 1997.

73. L. Perković and B. Reed. An improved algorithm for finding tree decompositions
of small width. In P. Widmayer, editor, Proceedings 25th Int. Workshop on Graph
Theoretic Concepts in Computer Science, WG’99, pages 148–154. Springer Verlag,
Lecture Notes in Computer Science, vol. 1665, 1999.

74. S. Ramachandramurthi. A lower bound for treewidth and its consequences. In
E. W. Mayr, G. Schmidt, and G. Tinhofer, editors, Proceedings 20th International
Workshop on Graph Theoretic Concepts in Computer Science WG’94, pages 14–25.
Springer Verlag, Lecture Notes in Computer Science, vol. 903, 1995.

75. S. Ramachandramurthi. The structure and number of obstructions to treewidth.
SIAM J. Disc. Math., 10:146–157, 1997.

76. B. Reed. Finding approximate separators and computing tree-width quickly. In
Proceedings of the 24th Annual Symposium on Theory of Computing, pages 221–
228, New York, 1992. ACM Press.

77. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7:309–322, 1986.

78. N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
J. Comb. Theory Series B, 63:65–110, 1995.

79. H. Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-
Institut für Informatik, Saarbrücken, Germany, 1998.

80. D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J. Comput., 5:266–283, 1976.

81. D. P. Sanders. On linear recognition of tree-width at most four. SIAM J. Disc.
Math., 9(1):101–117, 1996.

82. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

83. K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangula-
tions. In Proc. National Conference on Artificial Intelligence (AAAI ’97), pages
185–190. Morgan Kaufmann, 1997.

84. G. Szekeres and H. S. Wilf. An inequality for the chromatic number of a graph.
J. Comb. Theory, 4:1–3, 1968.

85. R. E. Tarjan and M. Yannakakis. Simple linear time algorithms to test chordiality
of graphs, test acyclicity of graphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13:566–579, 1984.

86. M. Thorup. Structured programs have small tree-width and good register alloca-
tion. Information and Computation, 142:159–181, 1998.

87. Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004-03-31.
88. J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel di-

graphs. SIAM J. Comput., 11:298–313, 1982.

16 H.L. Bodlaender

89. F. van den Eijkhof and H. L. Bodlaender. Safe reduction rules for weighted
treewidth. In L. Kuc̆era, editor, Proceedings 28th Int. Workshop on Graph The-
oretic Concepts in Computer Science, WG’02, pages 176–185. Springer Verlag,
Lecture Notes in Computer Science, vol. 2573, 2002.

90. G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combina-
torial Optimization: ”Eureka, you shrink”, pages 185–207, Berlin, 2003. Springer
Lecture Notes in Computer Science, vol. 2570.

91. A. Yamaguchi, K. F. Aoki, and H. Mamitsuka. Graph complexity of chemical
compounds in biological pathways. Genome Informatics, 14:376–377, 2003.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 17 – 27, 2005.
© Springer-Verlag Berlin Heidelberg 2005

From Research Prototypes to Industrial Strength Open
Source Products - The ObjectWeb Experience

Emmanuel Cecchet

INRIA/ObjectWeb – 655, Avenue de l’Europe – 38330 Montbonnot – France
Emmanuel.Cecchet@inria.fr

Abstract. Open source software has become a common way of disseminating
research results. In this talk, we first introduce the motivations and implications
of releasing research prototypes as open source software (OSS).

ObjectWeb is an international consortium fostering the development of open
source middleware. We give an overview of tools available for OSS develop-
ment and management based on ObjectWeb experiences. The infrastructure re-
quired for hosting such developments is also described.

We report various experiences and practices of small and large ObjectWeb
projects in their way to reach the quality of industrial strength products. Finally,
we summarize the lessons learned from the success and failures of these
projects.

Keywords: open source, community, technology transfer, software engineer-
ing, metrics.

1 Introduction

Academic research activities often lead to the implementation of prototype software
by either individuals such as master or Ph.D. students, or entire research groups. Open
source has become a common way to disseminate research results to the academic
community but there is an increasing industrial interest in open source software.
However, for a research prototype to become an industrial strength open source prod-
uct, there is a gap that we highlight in this article.

ObjectWeb [3] is an international open source consortium founded in 2001 by
INRIA, Bull and France Telecom R&D. It brings together various academic and in-
dustrial partners to foster the development of professional component-based open
source middleware. We report various experiences and practices of small and large
ObjectWeb projects resulting from research prototypes, in their way to reach the qual-
ity of industrial strength products.

The outline of this paper is as follows. Section 2 introduces the motivations and
implications of releasing a software as open source with an emphasis on the licensing
issues and the difficulties to build a community. The ObjectWeb consortium organi-
zation and infrastructure is introduced in section 3. Section 4 describes ObjectWeb
projects lifecycle and the best practices to build successful open source software. Sec-
tion 5 summarizes the lessons learned from the various project experiences and we
conclude in section 6.

18 E. Cecchet

2 Open Source Software

Open source has definitely changed the software landscape. Linux is a good example
of an industrial strength open source software (OSS) that grows from both industrial
and individual contributions. In academia, research institutions, especially in Europe
where patents on software still do not exist, OSS is considered as a good mean for
technology transfer. We outline next the motivations and implications to release a
research prototype as OSS.

2.1 Motivations and Implications

From an academic point of view, releasing a research prototype as OSS allows the
community to get familiar with the technology, contribute to it, eventually reproduce
experimental results in other environments and so on. However, the authors will ex-
pose themselves to critics by showing their design and code. Everybody is not ready
to get that exposure but it is necessary to go through this step to be also exposed to
contributions. Besides there is no magic with OSS and a technology will not get wide
acceptance or improve just because it is released as open source.

One of the most common mistake is releasing an end-of-life product or a no more
maintained research prototype as an OSS. Building a community around an OSS takes
a lot of time and contributors are usually very few. Even the largest OSS develop-
ments have few main contributors, most of the community contributions being bug
reports or small patches. An OSS can only survive if it has a sustained user commu-
nity. This requires significant resources and work in terms of user support to bootstrap
the community. This effort is often underestimated and leads to the death of a major-
ity of OSS projects like the one that are found on sourceforge.net. The same kind of
mistake is made by small companies who think that they will get extra engineering
manpower by open sourcing their product. This often leads to the exploitation of the
code base by competitors without getting short term contributions back from the
community. Before taking such decision, the license must be carefully chosen.

Attracting users and contributors to an OSS requires promotion not only in the form
of research papers but also some lobbying in the potentially interested communities.
This can take the form of non-scientific publication, participation to wide audience
events, collaboration with high visibility groups, getting references from other projects
and so on. Managing the community so that it feels involved in the project is also very
important to make it grow. Not only the code should be open, the users who are poten-
tial contributors must feel that they could influence the direction the project is heading if
they get involved. Researchers are often not familiar with these tasks and fail to build an
open source community around a good technology by neglecting these social aspects.

Even though you could have a large user community, getting industrial acceptance
requires extra effort. OSS still suffers from an image of low quality software that
could not be used in production. This is often due to the large number of available
open source projects from which it is hard to evaluate the maturity or quality. It took a
long time for Linux to get into real world business and there is still a strong belief that
you need to pay to obtain quality software. However, if someone still has to pay for
the development of OSS, there are several sustainable business models around OSS
based on services, support or dual licensing.

 From Research Prototypes to Industrial Strength Open Source Products 19

2.2 Licenses

Discussing the various flavors of open source licenses is definitely out of the scope of
this article, however we would like to highlight the main options and their implica-
tions.

The GNU Public License (GPL) [6] is a widely used license in the open source
community, however it is often considered as business hostile due to its viral nature.
Indeed, every product that embeds or links GPL code must also be released under
GPL. This is why most of the common Linux libraries such as glibc are released un-
der a non-viral BSD license. This allows commercial closed source products to be
linked to the Linux GPL code via these non-GPL libraries. GPL enforces code modi-
fications to be contributed back to the community but it limits their usage in commer-
cial products.

LGPL (Lesser GNU Public License) [7] relaxes the GPL constraints by allowing
the software to be included in any product being it closed or open source. However,
modifications to the original code should be released under LGPL. LGPL is often a
good choice for libraries or middleware.

The BSD license [8] is also very popular since it does not impose anything. Any-
one can use the code, modify it and redistribute it without any constraint. Moreover,
there is no obligation to contribute modifications back to the community. BSD like
licenses are appreciated from professionals because they can freely exploit the code
base and build commercial products out of it.

The APL (Apache Public License) [9] is similar to BSD but it requires every con-
tributor to give his copyright to the Apache Software Foundation (ASF) who is legally
responsible for the code. This means that the ASF owns the code but if someone
commits stolen code in an Apache project, the ASF can be sued.

Note that the license choice is very important since changing a license requires the
agreement of all copyright holders. Finding all contributors of a long-lived project and
getting their agreement might quickly get impossible. The dual licensing model also
requires the agreement of all copyright holders.

A well-known example of OSS using dual licensing is the MySQL database.
MySQL AB is the company holding the copyright of the whole MySQL code base.
MySQL code is released under GPL and prevents its distribution in non-GPL prod-
ucts. MySQL AB also sells for a fee the same code base under a license that has no
commercial usage restriction. This approach requires that any MySQL contributor
give up (or sell) his copyright to MySQL AB so that MySQL AB remains the copy-
right holder of the whole code base in order to continue its dual licensing business.

2.3 Building a Community

To be used in industrial environments, an OSS must prove its long term viability by
building a community of both developers and users. A truly successful open source
projects should survive the leaving of its original authors. For this to happen, the
project must have a significant user base from which a critical mass of contributors
can make the project live. We report next some best practices and experiences from
various ObjectWeb projects.

In the early stages of the public release, it is very important to provide timely
support to users. Choosing the right moment to release a software is not easy. A too

20 E. Cecchet

immature software will discourage users and it will be very hard to convince them to
look again at your piece of software later in time. The first impression is very impor-
tant. A too polished software is not desirable too since users will only download and
use the software without having anything to contribute in return. A good open source
project is a balance of innovative core technology, minor bugs and enviable missing
features.

There is no ready-made recipe to build a community and get external contributions,
however a good user documentation is definitely a mandatory starting point. Design
documents or developer documentations are of great help to let potential contributors
get familiar with the code. To reach broader audiences, it is often necessary to write
white papers or release technical brochures so that users get a quick insight of the pro-
ject and can decide if they want to invest further in the software. A book edited by a
recognized editor will definitely widen the credibility of the project and attract new
users.

Internationalization is also a good mean to get local communities getting involved
in the project. ObjectWeb has a very active community in Asia leading a translation
effort that promotes the technology in this area of the world. It is very important for
OSS to open their communities worldwide.

Last but not least, use cases and success stories are very important. It is very hard
to get feedback on how people are using an OSS, be it a positive or negative experi-
ence. However, an OSS with industrial references has more credibility to the eyes of
new users and comfort existing users in their choice.

3 The ObjectWeb Consortium

3.1 Organization

ObjectWeb is an open, not-for-profit, international consortium hosted by INRIA. The
main purpose of ObjectWeb is the development of industrial-strength, component-
based, distributed middleware technology, to be used and leveraged in many different
fields, including e-commerce, enterprise information systems, and telecommunication
services. As an open consortium, ObjectWeb has a collegial structure which is organ-
ized as follows:

- the Board, comprised of representatives from the different members of the
consortium (both individuals and organizations), is responsible for the overall
direction, policies, and strategy of the consortium. The daily operations are
nevertheless the responsibility of the Executive Committee.

- the College of Architects, comprised of appointed individuals chosen for their
expertise and their responsibilities in leading the development the ObjectWeb
code base, oversees the technical orientations within the consortium and is
ultimately responsible for the evolution and architectural integrity of the
overall code base and approval of new projects.

One of the main tenets of the ObjectWeb philosophy is that projects should deliver
middleware components that can be reused across a wide range of software platforms
(e.g., J2EE) and application domains. In order to attain this goal, a major long-term
objective of the ObjectWeb consortium is to ensure a coherent evolution of its code

 From Research Prototypes to Industrial Strength Open Source Products 21

base by building upon a component model and a set of associated common software
frameworks for building component assemblies.

3.2 Infrastructure

If open source software by itself is free, there is a cost for producing and releasing it.
ObjectWeb does not provide any resource to help in the development of the various
projects but it provides the infrastructure to host the projects. ObjectWeb benefits
from INRIA’s network infrastructure and employs 5 full-time people in the executive
committee to run the consortium and the infrastructure.

After 3 years of existence, we report some numbers to give an insight on the cur-
rent scale of the consortium. ObjectWeb currently hosts more than 80 projects, 285
active developers and more than 3200 registered users. There are about 180 mailing
lists counting about 8000 subscribers. The web site shows a steadily increasing num-
ber of visits as the consortium grows. A single server is still sufficient to handle the
3.5 millions of hits per month on the projects and consortium web pages that accounts
for about 40GB of data.

The development support is hosted on a separate machine that runs the GForge
software (see section 3.3). The number of hits reaches up to 4.6 millions per month
but hosting the software code and the various releases requires about 400GB of stor-
age. A full-time engineer deals with the administration of these 2 main servers. Scal-
ing and replicating these dynamic content Web servers is a concern and should be
addressed in the near future.

3.3 GForge

GForge is a platform for collaborative software development. It provides tools for
project and software management. GForge decentralizes the administration tasks by
delegating to each project leader the management of his team. Administrators of a
project can add new members to the team and assign different roles such as developer,
doc writer and so on. Each team member can have different rights for every GForge
tool including source code management repositories such as CVS or Subversion.

The task management module allows to track all tasks of the project and assign
them to team members. It is possible to define priorities, deadlines, dependencies be-
tween tasks and also attach discussion threads to any task. The developers can report
their progress by updating the completion percentage of the tasks they have been
assigned. Gantt diagrams can be dynamically generated to get a quick graphical over-
view of the workplan.

Exposing all tasks, even unassigned tasks, allows the community to get a compre-
hensive view of the current status and perspectives of the project. Project administra-
tors can also post job offers on GForge to attract new contributors to their projects.

GForge also integrates various trackers for bugs, support requests, patches and fea-
ture requests. Tasks can be associated to bugs or feature requests to have an homoge-
neous way to manage the development activities. These various trackers can be con-
figured to send updates to the project mailing lists. Finally, GForge provides a news

22 E. Cecchet

subsystem that allows projects to post news about significant events such as software
releases or significant decisions or contributions.

The ObjectWeb Forge has been extended to provide each project with a personal
Wiki space that allows developers to share notes and handle dynamic content in a
more convenient way. The Wiki complements the other GForge tools.

4 ObjectWeb Practices

Open source projects have basically two different communities to talk with: users and
developers. In both cases, mailing lists or forums are a common way to communicate.
However, the expectation of these communities are quite different and a contributor is
often first a user of the project.

Users usually get their first impression of the project from the Web site. Having a
clear message explaining the purpose of the project, its current maturity (alpha, beta,
stable, …), links to documentation, screenshots and so on definitely helps to make a
good impression. If the software is not well packaged and documented, this will be a
show stopper for professional users.

The developer’s community will be more interested in design documents as well as
API specifications or well documented code. Displaying a comprehensive workplan
with currently assigned and opened tasks definitely help people getting involved in
the project.

To get a project known by the open source community requires a significant
amount of efforts. Registering the project on sites like freshmeat.net and posting on
the relevant forums and web sites will let people know about the project and look at it.
RSS feeds are also a good mean to automatically broadcast new release announce-
ments or other significant events.

4.1 Project Organization

Each ObjectWeb project has a leader who is responsible for taking the design deci-
sions and managing the development team. It is important that all decisions are made
transparent so that both user and developer communities see the openness of the
project not only with regard to the source code but also for its modus operandi. All
design options should always be discussed on the mailing list.

An important role of the project leader is to prioritize and schedule tasks to organ-
ize the development team work and present a comprehensive workplan. This role can
of course be distributed among several project administrators but there should be one
person responsible for coordinating the whole project.

In the early stages of a project, it is often better to have a single mailing list for us-
ers and developers to foster the development of the community. If the split occurs too
early, users tend to post questions both on user and developer lists to get support. You
may miss contributions by posting design related discussions on a dedicated devel-
oper mailing list whereas users may have brought very interesting feedback. The vari-
ous ObjectWeb experiences have shown that dedicated user and developer mailing
lists is only necessary for projects with very large user communities. However, a
dedicated mailing list for CVS commits or trackers report might be desirable.

 From Research Prototypes to Industrial Strength Open Source Products 23

The project should also be organized in such a way that transparency can be
achieved through traceability. Traceability requires tools such as an history file track-
ing all developments, detailed CVS logs, list of libraries used by the project (name,
version, description, license, …), mailing list archives and so on.

Within ObjectWeb, each project leader has a complete autonomy over the direction
he wants to give to the project and who can join his team. Most successful projects
have used a very permissive policy in accepting new committers. Oftentimes, con-
tributors prefer submitting patches and not having CVS access because they are wor-
ried about breaking anything in the code base. But in practice, if an error occurs,
source management tools such as CVS or SVN offers the necessary support to roll-
back bogus commits. As long as coding rules are well defined and a good source code
management system is used, permissive acceptation policy allow the team to attract
new contributors and build an active developer community. Large projects with a
critical mass of developers can have much more restrictive policies but very few open
source projects ever reach that size.

4.1.1 Developer Community
The project leader can manage his developer community using the ObjectWeb Forge
tools. He can decide who will get CVS access, assign different roles with regard to
bug, task, patch, release management and so on.

Fostering contributions from external developers is very much encouraged, but do
not be mistaken into thinking that external contributors will be numerous, this does
not happen often. Simply open sourcing a project is not sufficient to magically ac-
quire contributions. Significant efforts in terms of communication, documentation,
code legibility, education, and support to newcomers must be made if one wants to
build a self-sustainable developer community around a project.

There is no policy regarding copyright transfer, but it is a common rule that each
contributor retains his copyright. ObjectWeb requires that a contribution can not be
rejected because a contributor wants to keep his copyright. A contribution can only be
rejected if does not match the architectural or technical vision that the project leader
wants to take for the project.

4.1.2 User Community
Depending on the target audience of a project, users could be middleware developers
or a very large audience of people with heterogeneous skills. In all cases, a project
does not survive without users. Providing support to users is a real challenging and
resource consuming task, but it is necessary to make a successful project.

You have to encourage your users to provide you with feedback since most users
take the product, try it and do not say anything about whether it suits their needs or
not. An active mailing list is often synonymous of an healthy user community and
users feel more comfortable posting on an active mailing list.

4.2 Federating Development Efforts

ObjectWeb is an open community (not just an open source community) and there are
no strict rules on how a project must or should be managed. However, we encourage
projects to federate their efforts to achieve our vision of middleware made of reusable

24 E. Cecchet

components. Every project leader is responsible for the management of his project
and has complete control over it. The leader has the entire freedom on architectural
and technical choices, such as on how he manages the communities around the project
or he wants to communicate on the project (marketing, …). The only constraints is
that the project remains in the ObjectWeb scope.

The ObjectWeb College of Architects can review projects to evaluate their status.
Typically, they may ask the project team to report at a quarterly architecture meeting.
The purpose of the review is to initiate discussions on how to move forward with pos-
sible synergies with other projects or working groups, how to integrate contributions
to/from the ObjectWeb community and especially with regard to the component
model and its frameworks. This allows the overall projects to make progress with the
help of the community.

ObjectWeb projects are using various metrics to measure their progress. These
metrics include: traffic and number of subscribers on the mailing list, number of con-
tributors and contributions (feedback, bug reports, lines of code contributes, patches,
…), web site statistics (hits, unique visitors, downloads, …) and number of users
(success stories, usage in production, …).

As the area of middleware is constantly evolving, it is natural that parts of the
overall code base may become deprecated or inactive. Different projects might also
combine their effort into a new common code base. It is not possible, and it is not the
intent, to drop projects and delete their code base. However, deprecated or inactive
projects should be clearly advertised so that users are properly informed when they
choose a technology. An old code base is often very useful and we think that it is
good to keep past projects in an “attic” space where it is always possible to consult
them.

4.3 Software Development

Open source software development has a short development cycle. New releases can
be carried out very quickly with an almost immediate feedback from the community
that helps testing and fixing bugs.

4.3.1 Documentation
Documentation is probably one the most important but often overlooked part of an
open source project. Introductory documents such as white papers, brochures or re-
search articles help newcomers apprehending the concepts of the project and getting a
first impression on the scope and quality of the software.

A well documented code allows the automatic generation of API documentations
using tools such as Javadoc or Doxygen [1]. This does not replace specification or
design documents but they are complementary and are often a useful reference for
developers.

4.3.2 Coding
It is important to clearly expose coding style and conventions in a document such as a
developer guide so that all developers can adopt the project rules. A good way to en-
force these rules is to share IDE parameters in the CVS repository. For example,
Eclipse [4] settings as well as .project and .classpath files can be shared in CVS. The
settings will provide all developers with the same formatting rules, Checkstyle [2]

 From Research Prototypes to Industrial Strength Open Source Products 25

settings, code templates including copyright notice and standard tags such as TODO
and FIXME which will relate to specific tasks.

The project should include all libraries necessary to rebuild the whole software and
possibly include the source code of third-party libraries so that it can be easily intro-
spected using tools like Eclipse. The compilation chain must also be documented and
automated as much as possible. Including descriptions in ant targets or Makefiles will
help the users to understand and rebuild the software.

One of the common issue is having cross-platform starting scripts. The usage of an
automated installer tool such as IzPack [5] can accommodate the platform specific
discrepancies and prevent the usage of environment variables or manual user configu-
ration which is often error prone and leads to increased support effort.

4.3.3 Testing
To assess the robustness of an open source software, an extensive regression test suite
is needed. Unit testing is now widely available and many tools exist [10] to automate
the execution of these tests and generate reports. It is a good practice to make the test
execution reports available online for each release or nightly build.

Unit testing might not be enough for certain pieces of software, especially those
dealing with distributed system issues where real deployment must be performed.
Specific load injection tools might be required to test these configurations. These
tools can also be used to perform performance measurements or evaluate the varia-
tions of various quality of services provided by the software.

4.3.4 Software Releases
Packaging and distributing the software is a key aspect of the success of an open
source software. It is necessary to have at least a source and binary distribution that
includes a comprehensive set of documentation. Additional automated distributions
such as nightly build releases or CVS snapshots are also common. It is a good
practice to include test suite reports in the source and automated distributions.

It is very important to keep an history of all releases and log all fixes and feature
adding between releases so that it is always possible to diagnose problems related to
a specific release of the software. Best practices include using CVS tags for every
release and branches for major releases.

Packaging such as compressed archives (.tar.gz or .zip) is common but more ad-
vanced installer tools such as IzPack can automate the installation process and pro-
vide the user with a friendly graphical interface. For an industrial strength open
source product, it is necessary to integrate smoothly in the targeted installation envi-
ronment such as having icons in the menu bars or automatic integration as a service
when applicable.

Linux specific packaging such as rpm or dbm allows for a quick adoption by these
communities. This packaging can often be handled by the communities belonging to
the specific Linux distributions. Moreover, it is possible to define software dependen-
cies and have an integrated support for uninstallation or upgrades. The JPackage
project [11] provides a common packaging of Java related open source software for
all Linux distributions.

26 E. Cecchet

4.4 Contributions

Contributions are necessary for an open source project to make progress. All Object-
Web projects experience difficulties in getting feedback from the community. Most
common forms of contributions are feature request, bug reports, patches and docu-
ment translations. However use case and success stories are hard to gather and unsat-
isfied users usually don’t contribute back negative experiences on the mailing list
which prevent oftentimes the teams to address properly the related issues.

Any form of feedback can be used as an input for the project. Bug reports for
example should lead to the creation of new test cases. Getting users to contribute on
the mailing list to provide support to new users can spare resources of the core team.
But for users to be aware of this, there is a significant amount of education that must
be proactively made by the project team.

Examples or demos are also very important to show various use cases scenarios
that can address various user needs. This complements documentation, tutorial,
courses or training materials. Having translation for the various documents can help
reaching new communities like Asia.

Code contributions are less frequent and most open source projects relies on few
core developers. Even if coding conventions have been made explicit, it is safe for
the development team to integrate manually the first contributions of an external con-
tributors before granting CVS write access.

5 Lessons Learned

It is hard if even possible to define guidelines for making a successful open source
project. However, we learned a few lessons from the success and failures experienced
by the 80 ObjectWeb projects.

First of all, a clear definition of the project and its goal is mandatory. If the project
implements a recognized standard or addresses a specific and identified need, it
makes the task much more easier for users to understand the purpose of the project.
But the most critical moment is probably choosing when to publicly release the soft-
ware.

A project should be mature enough so that it is usable but it shouldn’t be too pol-
ished else it will not attract any external contribution since there will be few opportu-
nities for bug reports or patches. A successful open source community arises from
project that have a good balance of maturity, usability, bugs and missing but desirable
features. It is very important for the project team to be always honest and to never
oversell the software. It will take a long time for a disappointed user to come back to
a project if he ever comes back.

Sharing all design or configuration choices on the project mailing list helps to in-
volve the community and attract new contributors. Oftentimes users try the software
right away without reading the documentation and therefore, examples, demos and
default configuration files handling the most common setups are very important.
Moreover, it is common that a piece of software is used for something it was not
designed for.

 From Research Prototypes to Industrial Strength Open Source Products 27

Promoting the projects can only be done properly by the project teams but it is a
time consuming task. Having an exhaustive web site that chooses relevant keywords
to be properly indexed by search engines can enhance the visibility of a project. Pres-
ence on Web forums such as slashdot.org, TheServerSide.com or freshmeat.net is free
but covering wide audience events such as LinuxWorld or even more academic events
has a greater impact. It is often hard to get success stories because many corporate
users are still reluctant to communicate about their usage of open source software.

The legibility of the source code can also have a significant impact on the project
adoption. One ObjectWeb project was implemented using all the subtleties of a pro-
gramming language making the code very efficient but hard to understand and to re-
use. The project ended up with no contributor and died when its original contributor
died.

Similar problems arise from research prototypes developed by a single student or
for the length of a financed project. At the end of the project or when the student
leaves, if nothing has been done to promote the project and build a community around
it fro the start of the project, it is more likely that the project will not survive. The
long-term viability is often a concern for industrial users because they want to use the
technology without being involved in its development.

6 Conclusion

ObjectWeb is an international consortium that is fostering the development of open
source middleware by academics and industrials since 2001. We have reported on the
ObjectWeb consortium experience in fostering the technology transfer of research
prototypes as open source software. From the motivation and implication of releasing
software as open source, we have presented various practices and lessons learned to
build successful open source software and communities.

Establishing such a consortium requires significant resources but once the process
has been bootstrapped, we strongly believe that open source is probably one of
the best technology transfer mean for research prototypes that provides software
commons.

References

[1] The Doxygen documentation system – http://www.doxygen.org.
[2] Checkstyle.- http://checkstyle.sourceforge.net/.
[3] The ObjectWeb consortium – http://www.objectweb.org.
[4] The Eclipse project – http://eclipse.org.
[5] The IzPack installer - http://www.izforge.com/izpack/.
[6] The GNU General Public License- http://www.gnu.org/copyleft/gpl.html.
[7] The GNU Lesser General Public License - http://www.gnu.org/ copyleft/ lesser.html.
[8] The BSD License - http://www.opensource.org/licenses/bsd-license.php.
[9] Apache Software License - http://www.opensource.org/licenses/apachepl.php.

[10] Unit, Testing Resources for Extreme Programming - http://www.junit.org/.
[11] The JPackage project - http://jpackage.org/.

How Hard Is It to Take a Snapshot?

Faith Ellen Fich

Department of Computer Science,
University of Toronto,

Toronto, Canada
fich@cs.utoronto.ca

Abstract. The snapshot object is an important and well-studied primi-
tive in distributed computing. This paper will present some implementa-
tions of snapshots from registers, in both asycnhronous and synchronous
systems, and discuss known lower bounds on the time and space com-
plexity of this problem.

1 Introduction

An important problem in shared memory distributed systems is to obtain a con-
sistent view of the contents of the shared memory while updates to the memory
are happening concurrently. For example, in a sensor network, simultaneous read-
ings of all the sensors may be needed, even when the measured readings change
frequently. In a distributed computation, periodically recording the global state
can facilitate error recovery, since the computation can be restarted from the
most recent backup, rather than from the beginning of the computation. Ideally,
one wants to collect these checkpoints without interrupting the computation.
Checkpoints can also be useful for debugging distributed programs, allowing
invariants that have been violated to be found more easily.

To obtain a consistent view, it is not enough to simply collect the entire con-
tents of memory by reading one value at a time. The difficulty is that the first
values that have been read may be out of date by the time that later values are
read. The problem can be formalized as the implementation of a snapshot object
that can be accessed concurrently by different processes. A snapshot object con-
sists of a set of m > 1 components, each capable of storing a value. Processes can
perform two different types of operations: UPDATE any individual component or
atomically SCAN the entire collection to obtain the values of all the components.
A single-writer snapshot object is a restricted version in which there are the
same number of processes as components and each process can UPDATE only
one component.

It is often much easier to design fault-tolerant algorithms for asynchronous
systems and prove them correct if one can think of the shared memory as a snap-
shot object, rather than as a collection of individual registers. Snapshot objects
have been used to solve randomized consensus [3, 4], approximate agreement
[8], and to implement bounded concurrent time stamps [15] and other types of
objects [5, 16].

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 28–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

How Hard Is It to Take a Snapshot? 29

Unbounded time stamps are particularly easy to generate using a single-
writer snapshot object. Each process stores the time stamp from its last request
(or 0, if has not yet requested one) in its component. To obtain a new time
stamp, a process performs a SCAN and adds 1 to the maximum time stamp
contained in the result. Then the process updates its component with its new
time stamp. This ensures that a request that is started after another request has
completed will receive a larger time stamp. Note that concurrent requests can
receive the same or different time stamps.

Because snapshot objects are much easier for programmers to use, researchers
have spent a great deal of effort on finding efficient implementations of them from
registers, which, unlike snapshot objects, are provided in real systems.

Our asynchronous shared memory system consists of n processes, p1, . . . , pn

that communicate through shared registers. At each step of a computation, one
process can either read from one register or write a value to one register. In
addition, it can perform a bounded number of local operations that do not
access shared registers. The order in which processes take steps is determined
by an adversarial scheduler. In synchronous shared memory, at each step, every
active process either reads from one register or writes a value to one register, in
addition to performing a bounded amount of local work. An active process is a
process that has neither completed its task nor crashed. The order in which the
shared memory operations occur during a step is determined by an adversarial
scheduler.

We consider linearizable (atomic) implementations [17], where each SCAN
and UPDATE operation appears to take effect at some instant during the time
interval in which it is executed. Implementations should also be wait-free. This
means that there is an upper bound on the number of steps needed for any
process to perform any operation, regardless of the behaviour of other processes.
In particular, processes do not have to wait for other processes to finish. Thus
wait-free implementations tolerate crash failures.

The rest of this paper will present an overview of some different implemen-
tations of snapshot objects from registers and discuss known lower bounds.
Both the time complexity and the number of registers are considered, but not
the size of the registers. Various techniques are known to reduce register size
[9, 11, 12, 15, 19], but these are beyond the scope of this paper.

2 An Asynchronous Implementation Using m Registers

Our first implementation uses one shared register for each component of the
snapshot object. Although simply collecting the values of the registers may give
an invalid view, a valid view is guaranteed if two collects are performed by some
process and, meanwhile, the values of none of the registers are changed. Note
that the value of a register may change and then change back again. To dis-
tinguish between this possibly bad situation and the situation when no changes
have occurred, each process performing an UPDATE to a component writes its

30 F.E. Fich

identifier and a sequence number to the corresponding register together with the
new value.

However, a process can repeatedly collect the values without ever getting two
consecutive identical results. To overcome this problem, when a process performs
UPDATE, it first performs SCAN and writes the result, together with the new
value, its identifier, and a sequence number to the appropriate register. Now,
when a process performs two collects that have different results, it could use the
result of a SCAN that is stored in one of the registers.

Unfortunately, the stored result may be out of date: It may be a memory state
that only occurred before the process began its SCAN. To ensure that a process
p performing a SCAN gets a memory state that occurs while it is executing, it
repeatedly performs collects until either two consecutive collects are the same
(in which case, the result of this collect is its result) or it sees that some other
process has performed at least two different UPDATES since p performed its
first collect. In the second case, p returns the last result written by this other
process, which is from a SCAN that is part of an UPDATE that began after p
began its SCAN.

One of these two cases will occur by the time a process has performed n + 2
collects. Each collect takes takes Θ(m) steps. Thus the time complexity of a
SCAN is O(mn). Since an UPDATE contains an embedded SCAN, its time
complexity is also O(mn). This algorithm, although presented in a slightly dif-
ferent form, is from Afek, Attiya, Dolev, Gafni, Merritt, and Shavit’s paper [1].
It also appears in [13].

3 An Implementation of a Snapshot Object from a
Single-Writer Snapshot Object

Anderson [2] shows how to construct a snapshot object with m components
shared by n processes using a single-writer snapshot object shared by n pro-
cesses. The idea is that each process stores information about every component
of the snapshot object in its component of the single-writer snapshot object.
Specifically, it stores the value of the last UPDATE operation it performed to
each component, together with a time stamp for each of those UPDATES.

To perform a SCAN of the snapshot object, a process performs a SCAN of
the single-writer snapshot object and, for each component, returns the value
with the latest time stamp. Process identifiers are used to break ties.

To perform an UPDATE to component i of the snapshot object, a process
performs a SCAN of the single-writer snapshot object. The result of the SCAN
gives it the time stamp of the last UPDATE to component i performed by
each process. It generates a new time stamp that is later than all of these.
Then the process UPDATES its single-writer component with the new value
and time stamp for component i and the old values and time stamps for all
other components.

Thus, if there is an implementation of a single-writer snapshot object in which
SCAN takes time S(n) and UPDATE takes time U(n) in the worst case, then

How Hard Is It to Take a Snapshot? 31

there is an implementation of a snapshot object in which SCAN takes O(S(n))
time and UPDATE takes O(S(n) + U(n)) time.

4 Asynchronous Single-Writer Snapshot Implementations
Using Lattice Agreement

Lattice agreement is a decision problem that is closely related to the single-writer
snapshot object. In this problem, each process gets an element of some lattice
as input and must output an element that is at least as large as its input, but
no larger than the least upper bound of all the inputs. Furthermore, all outputs
must be comparable with one another.

It can easily be solved in O(1) time using a single-writer snapshot object:
Each process UPDATES its component with its input, performs a SCAN, and
takes the least upper bound of all the lattice elements in the result as its output.
Conversely, a single-writer snapshot object in which each process performs at
most one operation can be implemented using single-writer registers and an in-
stance of the lattice agreement problem [7]. To perform an UPDATE, a process
writes the new value to its single-writer register and then performs a SCAN,
throwing away the result. To perform a SCAN, a process collects the values in
all the single-writer registers and uses this view as an input to lattice agreement,
where one view is less than or equal to another view in the lattice if the set of
components that have new values in the first view is a subset of those in the other
view. A process uses its output from the lattice agreement problem as the result
of its SCAN. The reason a process performing an UPDATE with some value v
performs an embedded SCAN is to ensure that there isn’t a later UPDATE by an-
other process whose new value is collected by some SCAN that doesn’t collect v.

Attiya, Herlihy, and Rachman [7] extend this idea to allow processes to per-
form an unbounded number of SCAN and UPDATE operations using an un-
bounded number of instances of lattice agreement. First, each process writes
a sequence number to its single-writer register together with its new value. In
the lattice, one view is less than or equal to another view if each component of
the first view has a sequence number that is less than or equal to the sequence
number in the same component of the other view. A process p that wants to
perform a SCAN (or an embedded SCAN as part of an UPDATE) uses the view
it collects as input to an instance of lattice agreement that it has not already
solved. There may be multiple instances of lattice agreement that are active si-
multaneously. Process p either chooses the latest of these, if it has not already
solved it, or starts a new instance. After getting an output from this instance,
p checks whether a later instance of lattice agreement is active. If not, it can
use this view as its result. Otherwise, it performs a second collect and uses the
view from it as input to the latest instance that is now active. If, after getting
its output to this instance, there is an even later active instance, there is some
other process that participated in the same instance and got a valid view. Then
p uses this view as its result.

32 F.E. Fich

Inoue, Chen, Masuzawa, and Tokura [18] show how to solve agreement in
this lattice in O(n) time. From the discussion above, this implies the existence
of an n-component single-writer snapshot implementation from an unbounded
number of registers in which SCAN and UPDATE take O(n) time. They consider
a complete binary tree of height �log2 n	, with each process assigned to a different
leaf. At its leaf, a process has a view consisting of only one component, which
contains its new value. The process proceeds up the tree, at each successive level
doubling the length of its view, until, at the root, it has a view that includes all
n components. At each internal node of height k, a process solves an instance
of lattice agreement among the 2k processes that are associated with leaves in
its subtree, using an input formed from its resulting view at the previous level.
This takes O(2k) time. The fact that the inputs of processes arriving from the
same child are comparable with one another ensures that all the outputs are
comparable with one another.

Attiya and Rachman [9] also use lattice agreement to show that an n-process
single-writer snapshot object can be implemented from single-writer registers so
that the time complexities of both SCAN and UPDATE are in O(n log n). Like the
previous implementation, they use a complete binary tree of height �log2 n	 that
contains a single-writer register for each process at every node. However, their
approach to solving lattice agreement is quite different. First, they consider the
case when at most n SCAN and UPDATE operations are performed. To perform
an UPDATE, a process writes its new value, together with a sequence number, to
its single-writer register at the root of the tree and then performs an embedded
SCAN. To perform a SCAN, a process traverses the tree from the root down to
a leaf. All the processes that end at the same leaf will return the same view. A
process collects the views written to the single-writer registers at each internal
node it reaches. It decides whether to go left or right depending on how the sum
of the sequence numbers it sees compares to some appropriately chosen thresh-
old. A process with a sum that is at or below the threshold goes left and writes
the same view at this child as it wrote at the node from which it came. A process
that goes right computes a new view by taking the union of the views that it col-
lected and writes this view at this child. In either case, the process repeats the
same procedure at the child, until it reaches a leaf. An important observation is
that the sequence number in a component of a view written to a right child is at
least as large as the sequence number in the same component of a view written to
its left sibling. This ensures that the views that processes write at different leaves
are comparable with one another. To handle the general case, the operations are
divided into virtual rounds, each containing n operations. They use a variety of
mechanisms, including bounded counters and handshakes, to separate the oper-
ations from different rounds so that they do not interfere with one another.

5 Faster Asynchronous Snapshot Implementations

Israeli, Shaham, and Shirazi [20] present an implementation of an n-component
single-writer snapshot object A with O(n) SCAN time and O(S(n) + U(n))

How Hard Is It to Take a Snapshot? 33

UPDATE time from a single n-component single-writer snapshot object B with
SCAN time S(n) and UPDATE time U(n) and n single-writer registers. Each
process uses its component in the base object B to store both the current value
of its component and a sequence number that it increments each time it per-
forms an UPDATE. After performing an UPDATE, a process then SCANS B
and writes the resulting view to its register. Since B is linearizable, all the views
that are written can be totally ordered, using the sequence numbers contained
in the views. To perform a SCAN of A, a process simply reads the views written
in the registers and chooses the most recent one. Applying the transformation
in Section 3 yields a snapshot object with O(n) SCAN time and O(S(n)+U(n))
UPDATE time. In particular, using Attiya and Rachman’s implementation in
Section 4 yields a snapshot object with O(n) SCAN time and O(n log n) UP-
DATE time.

The same paper also gives a similar implementation of an n-component single-
writer snapshot object A′ with O(n) UPDATE time and O(n + S(n) + U(n))
SCAN time. Here, each process stores a possibily inconsistent view in its regis-
ter. To UPDATE A′, a process reads the views of all processes and, from them,
constructs a new view whose i’th component contains the maximum of the se-
quence numbers in component i together with its associated value. It increments
the sequence number in its own component of this view and replaces its value
with the new value. It then writes this view to its register. To SCAN A′, a
process first reads the registers of all processes and constructs a new view, as
above. It UPDATES its component of the base object B with this view and then
SCANS B. Finally, it constructs a new view, as above, from the views returned
by the SCAN, which it returns as its result. Again, using Attiya and Rachman’s
implementation in Section 4 yields a single-writer snapshot object with O(n)
UPDATE time and O(n log n) SCAN time.

6 Lower Bounds for Asynchronous Snapshots

Jayanti, Tan, and Toueg [23] use a carefully constructed covering argument to
prove that, in any implementation of an n-component single-writer snapshot
object, there is an execution of a SCAN that must read from at least n − 1
different registers. Since a min{m, n}-component single-writer snapshot object
is a special case of an m-component snapshot object shared by n processes, this
implies a lower bound of min{m, n} − 1 on the space and SCAN time of any
implementation of the latter.

Fatourou, Fich, and Ruppert [14, 13], using a different covering argument,
prove that any implementation of an m-component snapshot object shared by
n ≥ m processes requires at least m registers, matching the upper bound in
Section 2. They introduce the concept of a fatal configuration, which has a set
of processes each of which is about to write to a different register and are in
the midst of performing UPDATES to a smaller number of components. No
correct implementation using m or fewer registers can reach a fatal configuration;
otherwise, there is an insufficient number of registers to record UPDATES to the

34 F.E. Fich

other components. This fact implies a significant amount of information about
such implementations: SCANS never write to registers, each UPDATE operation
writes to only one register, UPDATE operations to the same component write
to the same register, and UPDATE operations to different components write to
different registers. Hence, at least m registers are needed.

Using these results together with an intricate covering argument, they prove
that, for m < n, any space-optimal implementation takes Ω(mn) time to perform
a SCAN in the worst case. This also matches the upper bound in Section 2. For
m = n − 1, the lower bound is Ω(n2), in contrast to the implementations in
Section 4 that use single-writer registers and run significantly faster. Note that
any implementation using single-writer registers only needs to use one single-
writer register per process: All of the single-writer registers into which a process
can write can be combined into one single-writer register having many fields.

Israeli and Shirazi [IS98] proved an Ω(n) lower bound on UPDATE time
for implementations of an n-component single-writer snapshot object using only
single-writer registers. Their proof uses an elegant combinatorial argument. This
can be extended to an Ω(m) lower bound on UPDATE time for implementations
of an m-component snapshot object from m (multi-writer) registers.

7 Synchronous Snapshot Implementations and Lower
Bounds

There is a simple implementation of a synchronous m-component snapshot ob-
ject due to Neiger and Singh [24] in which SCAN and UPDATE each take m+1
steps in the worst case. It uses m registers, each of which holds the current value
of one component. Their idea is to divide time into blocks of m + 1 slots, one
for reading each component and one for writing. To perform an UPDATE, a
process waits until the next write slot and then writes the new value into the
appropriate register. To perform a SCAN, a process just reads the values from
the registers in the order specified by the next m read slots. It is possible to
linearize every operation that includes a write slot in some order during that
write slot so that all the views that result are consistent. They also prove that in
any implementation using m registers, each of which can hold the value of only
one component, S(n) + U(n) ∈ Ω(m), where S(n) is the worst case SCAN time
and U(n) is the worst case UPDATE time.

A small variant of this idea allows SCANS to be performed in one step, while
UPDATES take at most 2m + 1 steps. In this case, one (larger) register holds
the value of the entire snapshot object, which can be read at any time. Time is
divided into blocks of 2m slots. A process that wants to UPDATE component i
reads the register during slot 2i−1 and then write backs its contents in the next
step, with its new value replacing the old value of component i. Brodsky and
Fich [10] show that, with 2m−1 registers, it is possible to improve the UPDATE
time to O(log m). The registers are conceptually organized as a strict balanced
binary tree, where each of the m leaves contains the value of a different compo-
nent and, provided no UPDATES are in progress, each internal node contains

How Hard Is It to Take a Snapshot? 35

the concatenation of the values of its children. A process performs a SCAN by
reading the register at the root. To perform an UPDATE, a process writes the
new value to the corresponding leaf and then propagates this information up the
tree to the root. Information from its siblings and from the siblings of each of
its ancestors is also propogated to the root at the same time.

Brodsky and Fich present another implementation in which UPDATE takes
at most 3 steps and SCAN takes at most 3m− 1 steps. It uses m registers, one
for each component. Each register has two fields, a top-field and a bottom-field,
each of which holds a component value. Time is divided into two alternating
phases, each consisting of m consecutive steps. During top-write phases, a pro-
cess performing an UPDATE writes its new value to the top-field of the specified
component and processes performing SCANS read from the bottom-fields. Sim-
ilarly, during bottom-write phases, a process performing an UPDATE writes its
new value to the bottom-field of the specified component and processes perform-
ing SCANS read from the top-fields. This ensures that writes to top-fields don’t
interfere with reads from top-fields and writes to bottom-fields don’t interfere
with reads from bottom-fields. In addition, each register contains a third field
to which processes write when they UPDATE the corresponding component.
The information in this field allows a process performing a SCAN to determine
whether the top-field or the bottom-field contains the value of the most recent
UPDATE to that component.

They also show how to combine their two implementations to perform UP-
DATE in O(log(m/c)) time and SCAN in O(c) time, for any positive integer
c ≤ m. For n < m, they get the same results, but with m replaced by n.

Finally, using an information theoretic argument, they prove a general trade-
off U(n) ∈ Ω(log(min{m, n}/S(n))) between the worst case UPDATE time U(n)
and the worst case SCAN time S(n), matching their upper bounds.

8 Conclusions

This paper presents a brief survey of different implementations of snapshot ob-
jects from registers, together with some complexity lower bounds. It is not in-
tended to be comprehensive. There are a number of interesting aspects this paper
does not cover, for example, randomized implementations [7], implementations
that are adaptive to contention among processes [6], and implementations from
more powerful objects [7, 25, 22].

Acknowledgements

I am grateful to Hagit Attiya for many interesting discussions about snapshot
objects and to Alex Brodsky, Danny Hendler, and Kleoni Ioannidou for helpful
comments about this paper. This work was supported by the Natural Sciences
and Engineering Research Council of Canada.

36 F.E. Fich

References

1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic Snap-
shots of Shared Memory, JACM, volume 40, number 4, 1993, pages 873–890.

2. J. Anderson, Multi-Writer Composite Registers, Distributed Computing, volume
7, number 4, 1994, pages 175–195.

3. James Aspnes, Time- and Space-Efficient Randomized Consensus, Journal of Al-
gorithms, volume 14, number 3, 1993, pages 414–431.

4. James Aspnes and Maurice Herlihy, Fast, Randomized Consensus Using Shared
Memory, Journal of Algorithms, volume 11, number 2, 1990, pages 441–461.

5. James Aspnes and Maurice Herlihy, Wait-Free Data Structures in the Asyn-
chronous PRAM Model, 2nd ACM Symposium on Parallel Algorithms and Ar-
chitectures, 1990, pages 340–349.

6. Hagit Attiya, Arie Fouren, and Eli Gafni, An Adaptive Collect Algorithm with
Applications, Distributed Computing, volume 15, 2002, pages 87–96.

7. Hagit Attiya, Maurice Herlihy, and Ophir Rachman, Atomic Snapshots Using Lat-
tice Agreement, Distributed Computing, volume 8, 1995, pages 121–132.

8. Hagit Attiya, Nancy Lynch, and Nir Shavit, Are Wait-free Algorithms Fast? JACM,
volume 41, number 4, 1994, pages 725–763.

9. H. Attiya and O. Rachman, Atomic Snapshots in O(n log n) Operations, SIAM
Journal on Computing, volume 27, number 2, 1998, pages 319–340.

10. Alex Brodsky and Faith Ellen Fich, Efficient Synchronous Snapshots, 23rd Annual
ACM Symposium on Principles of Distributed Computing, 2004, pages 70-79.

11. C. Dwork, M. Herlihy, and O. Waarts, Bounded Round Numbers, 12th Annual
ACM Symposium on Principles of Distributed Computing, 1993, pages 53–64.

12. C. Dwork and O. Waarts, Simple and Efficient Concurrent Timestamping or
Bounded Concurrent Timestamps are Comprehensible, 24th Annual ACM Sym-
posium on Theory of Computing, 1992, pages 655–666.

13. Panagiota Fatourou, Faith E. Fich, and Eric Ruppert, A Tight Time Lower Bound
for Space-Optimal Implementations of Multi-Writer Snapshots, 35th Annual ACM
Symposium on Theory of Computing, 2003, pages 259–268.

14. Panagiota Fatourou, Faith E. Fich, and Eric Ruppert, Space-Optimal Multi-Writer
Snapshot Objects Are Slow, 21st Annual ACM Symposium on Principles of Dis-
tributed Computing, 2002, pages 13–20.

15. Rainer Gawlick, Nancy Lynch, and Nir Shavit, Concurrent Timestamping Made
Simple, Israel Symposium on the Theory of Computing and Systems, LNCS volume
601, 1992, pages 171–183.

16. Maurice Herlihy, Wait-Free Synchronization, ACM Transactions on Programming
Languages and Systems, volume 13, number 1, 1991, pages 124–149.

17. Maurice Herlihy and Jeannette Wing, Linearizability: A Correctness Condition for
Concurrent Objects, ACM Transactions on Programming Languages and Systems,
volume 12, number 3, 1990, pages 463–492.

18. Michiko Inoue, Wei Chen, Toshimitsu Masuzawa, and Nobuki Tokura. Linear Time
Snapshots Using Multi-writer Multi-reader Registers. Proceedings of the 8th In-
ternational Workshop on Distributed Algorithms, LNCS volume 857, 1994, pages
130–140.

19. A. Israeli and M. Li, Bounded Time Stamps, Distributed Computing, volume 6,
number 4, 1993, pages 205–209.

20. A. Israeli, A. Shaham, and A. Shirazi, Linear-Time Snapshot Implementations in
Unbalanced Systems, Mathematical Systems Theory, volume 28, number 5, 1995,
pages 469–486.

How Hard Is It to Take a Snapshot? 37

21. A. Israeli and A. Shirazi, The Time Complexity of Updating Snapshot Memories,
Information Processing Letters, volume 65, number 1, 1998, pages 33–40.

22. Prasad Jayanti, f-Arrays: Implementation and Applications, 21st Annual ACM
Symposium on Principles of Distributed Computing, 2002, pages 270–279.

23. P. Jayanti, K. Tan, and S. Toueg, Time and Space Lower Bounds for Nonblocking
Implementations, SIAM Journal on Coomputing, volume 30, 2000, pages 438–456.

24. G. Neiger and R. Singh, Space Efficient Atomic Snapshots in Synchronous Sys-
tems, Technical Report GIT-CC-93-46, Georgia Institute of Technology, College of
Computing, 1993.

25. Yaron Riany, Nir Shavit, and Dan Touitou, Towards a Practical Snapshot Algo-
rithm, Theoretical Computer Science, volume 269, 2001, pages 163–201.

Logical Foundations for Data Integration

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica “Antonio Runerti”,
Università di Roma “La Sapienza”,
Via Salaria 113, I-00198 Roma, Italy

http://www.dis.uniroma1.it/~lenzerini

Integrating heterogeneous data sources, which are distributed over highly dy-
namic computer networks, is one of the crucial challenges at the current evo-
lutionary stage of Information Technology infrastructures. Large enterprises,
business organizations, e-government systems, and, in short, any kind of in-
ternetworking community, need today an integrated and virtualized access to
distributed information resources, which grow in number, kind, and complexity.

Several papers published in the last decades point out the need for a formal
approach to data integration. Most of them, however, refer to an architecture
based on a global schema and a set of sources. The sources contain the real data,
while the global schema provides a reconciled, integrated, and virtual view of the
underlying sources. As observed in several contexts, this centralized achitecture is
not the best choice for supporting data integration, cooperation and coordination
in highly dynamic computer networks. A more appealing architecture is the one
based on peer-to-peer systems. In these systems every peer acts as both client and
server, and provides part of the overall information available from a distributed
environment, without relying on a single global view.

In this talk, we review the work done for rigorously defining centralized data
integration systems, and then we focus on peer-to-peer data integration, with
the aim of singling out the principles that should form the basis for data in-
tegration in this architecture. Particular emphasis is given to the problem of
assigning formal semantics to peer-to-peer data integration systems. We discuss
two different methods for defining such a semantics, and we compare them with
respect to the above mentioned principles.

References

1. K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Improving data access in
P2P systems. IEEE Internet Computing, 2002.

2. P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and
I. Zaihrayeu. Data management for peer-to-peer computing: A vision. In Proc. of
the 5th Int. Workshop on the Web and Databases (WebDB 2002), 2002.

3. A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under constraints
in data integration systems. In Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2003), 2003. To appear.

4. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Data integration in
p2p systems. In Databases, Information Systems, and Peer-to-Peer Computing,
pages 77–90. Springer, LNCS 2944, 2004.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 38–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Logical Foundations for Data Integration 39

5. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations
of peer-to-peer data integration. 2004. To appear.

6. L. Camarinha-Matos, H. Afsarmanesh, C. Garita, and C. Lima. Towards an archi-
tecture for virtual enterprises. J. Intelligent Manufacturing, 9(2), 1998.

7. T. Catarci and M. Lenzerini. Representing and using interschema knowledge in
cooperative information systems. J. of Intelligent and Cooperative Information
Systems, 2(4):375–398, 1993.

8. A. Doan, P. Domingos, and A. Halevy. Learning to match the schemas of data
sources: a multistrategy approach. Machine Learning Journal, 2003.

9. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. In Proc. of the 9th Int. Conf. on Database Theory (ICDT 2003),
pages 207–224, 2003.

10. M. Fitting. Basic modal logic. In Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 1, pages 365–448. Oxford Science Publications, 1993.

11. E. Franconi, G. M. Kuper, A. Lopatenko, and L. Serafini. A robust logical and
computational characterisation of peer-to-peer database systems. In Databases,
Information Systems, and Peer-to-Peer Computing, pages 64–76. Springer, LNCS
2944, 2004.

12. M. Friedman, A. Levy, and T. Millstein. Navigational plans for data integration.
In Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI’99), pages 67–73.
AAAI Press/The MIT Press, 1999.

13. S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases do
for peer-to-peer? In Proc. of the 4th Int. Workshop on the Web and Databases
(WebDB 2001), 2001.

14. A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In Proc. of the 19th IEEE Int. Conf. on Data Engineering
(ICDE 2003), 2003.

15. A. Y. Halevy. Answering queries using views: A survey. Very Large Database J.,
10(4):270–294, 2001.

16. J. Heflin and J. Hendler. A portrait of the semantic web in action. IEEE Intelligent
Systems, 16(2):54–59, 2001.

17. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’97), pages 51–61, 1997.

18. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: a look behind
the curtain. In Proc. of the 22nd ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS 2003), pages 1–14. ACM Press and Addison
Wesley, 2003.

19. A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer
systems: Semantics and algorithmic issues. pages 325–336. ACM Press and Addison
Wesley, 2003.

20. C. Koch. Query rewriting with symmetric constraints. In Proc. of the 2nd Int.
Symp. on Foundations of Information and Knowledge Systems (FoIKS 2002), vol-
ume 2284 of Lecture Notes in Computer Science, pages 130–147. Springer, 2002.

21. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

22. H. J. Levesque and G. Lakemeyer. The Logic of Knowledge Bases. The MIT Press,
2001.

40 M. Lenzerini

23. J. Madhavan and A. Y. Halevy. Composing mappings among data sources. In Proc.
of the 29th Int. Conf. on Very Large Data Bases (VLDB 2003), pages 572–583,
2003.

24. P. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both
as view rules. In Databases, Information Systems, and Peer-to-Peer Computing,
pages 91–107. Springer, LNCS 2944, 2004.

25. M. P. Papazoglou, B. J. Kramer, and J. Yang. Leveraging Web-services and peer-
to-peer networks. In Proc. of the 15th Int. Conf. on Advanced Information Systems
Engineering (CAiSE 2003), pages 485–501, 2003.

26. J. D. Ullman. Information integration using logical views. In Proc. of the 6th Int.
Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer
Science, pages 19–40. Springer, 1997.

Recent Advances in Graph Drawing

Petra Mutzel

Vienna University of Technology,
Favoritenstr. 9–11 E186, A-1040 Vienna, Austria

mutzel@ads.tuwien.ac.at
http://www.ads.tuwien.ac.at

Abstract. Graph drawing is a very active field and deals with the visu-
alization of discrete structures in such a way that they are easy to read
and understand. Apart from the classical applications of graph drawing,
such as VLSI design and data base visualization, recently, new emerg-
ing application areas have arisen. E.g., in bioinformatics it is of growing
interest to visualize biochemical networks such as protein interaction net-
works, regulatory and signaling pathways. In software engineering and
for process modelling the visualization of UML class diagrams is get-
ting increasingly important. For the analysis of the world wide web it is
important to visualize internet connections.

The new application areas demand new challenges to the field of graph
drawing. One of the main current challenges is to deal effectively with
very large graphs. Recent technological advances have brought increased
data volumes and data complexity. Moreover, graph drawing has to deal
with dynamic graphs that evolve over time. In this context, interactive
visualization is getting increasingly important.

Recently, in graph drawing a lot of effort has been spent to attack
these problems. But also in classical topics like crossing minimization a
lot of progress has been made.

We give a survey on the recent trends and advances in graph drawing.
This includes challenging new and classical problems as well as theoret-
ical and practical algorithmic solutions and software tools.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, p. 41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 42 – 46, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Hyperdatabase Network – New Middleware for
Searching and Maintaining the

Information Space

Hans-Jörg Schek

Swiss Federal Institute of Technology, Zurich (ETH) and
University for Health Sciences,

Medical Informatics, and Technology Tyrol (UMIT)

Abstract. The hyperdatabase network, a project at ETH Zurich since 1998, is a
new middleware for the information space and includes new multi-object multi-
feature search facilities for multimedia objects. It applies database technology
at the level of services and combines peer-to-peer, grid, and service-oriented
architectures.

1 Introduction

In the past we talked about single database systems or federated systems consisting
of a few participating databases. In the future, we expect an ever increasing number
of data sources, reaching from traditional databases and large document and web
page collections, down to embedded information sources in mobile “smart” objects
as they will occur in a pervasive computing environment. Therefore, not only the
immense amount of information demands new thoughts but also the number of
different information sources and their coordination poses a great challenge for the
development of the appropriate information infrastructure. We talk about the con-
tinuous, “infinite” information, shortly called the “information space”. Information
in this space is distributed, heterogeneous, and undergoes continuous changes. So,
the infrastructure for the information space must provide convenient tools for ac-
cessing information via sophisticated search facilities and for combining or integrat-
ing search results from different sources (1), for developing distributed applications
for analyzing and processing information (2), and for transactional (workflow)
processes that ensure consistent propagation of information changes and simultane-
ous invocations of several (web) services (3). For the implementation of such an
infrastructure we must strive for functions including recoverability, scalability, and
availability. As far as possible such an infrastructure should avoid global compo-
nents. Rather a peer-to-peer middleware must be provided that has some self-
configuration and adaptation features to various applications and their load charac-
teristics. A synthesis of service orientation, peer-to-peer, and grid middleware is the
target of a new middleware starting from the basis of extended technology in data-
bases and in information retrieval.

 The Hyperdatabase Network 43

Fig. 1. Hyperdatabase network as synthesis of DB technology, SoA, Grid, and P2P

2 The Hyperdatabase Network – Vision and Prototype

In the presentation we will elaborate some of the aspects in these areas and report on
our hyperdatabase network research at ETH and UMIT. The hyperdatabase vision
[1,2,3] was established at ETH Zurich several years ago with the objective to identify
a new middleware infrastructure based on well-understood concepts evolving from
database technology. While a database system handles data records, a hyperdatabase
system deals with services and service invocations. Services in turn may be using a
database system. Therefore, we gave our vision the name hyperdatabase, i.e., a soft-
ware layer for services on top of databases.

Fig. 2. Each node is equipped with the hyperdatabase layer

Core
HDB

Register
Service Description

E
xtCol

E
xtShp

Store
Object

Store
Features

n

ff

12
9.132.1.2

13
4 34 3 11

Extract
Term

Extract
Color

Extract Shape Extract Color Load Information

Register
Service Instance

Separate
MTypes

Analyze
Context

Connect Discon-
nect

 Processes as value added
compound services

 Grid: dynamic resource
management (service routing)

 Peer-to-peer execution of
services

 Transactional guarantees for
compound services,

 Multi-object multi- feature
similarity queries

Hyperdatabase
Network

44 H.-J. Schek

In short, a hyperdatabase (HDB) takes care of optimal routing similar to query op-
timization in a conventional database and supports sophisticated similarity search and
high-dimensional feature space organization. Further it provides process support with
transactional guarantees over distributed components using existing services as a
generalization of traditional database transactions [4]. Most importantly and in con-
trast to traditional database technology, a hyperdatabase does not follow monolithic
system architecture but is fully distributed over all participating nodes in a network.
Every node is equipped with an additional thin software layer, a so-called hyperdata-
base (HDB layer as depicted in Figure 2.

The HDB layer extends existing layers like the TCP/IP stack with process related
functionalities. As such, the HDB layer abstracts from service routing much like
TCP/IP abstracts from data packet routing. Moreover, while the TCP/IP protocol
guarantees correct transfer of bytes, the HDB layer guarantees the correct shipment of
process instances. Of course, a distributed process infrastructure requires that each
service provider locally installs this additional software layer. Ideally, this layer
comes together with the operating system much like the TCP/IP stack does. We have
implemented a prototype system called OSIRIS (short for Open Service Infrastructure
for Reliable and Integrated Process Support) following these principles [5]. The main
functions of the OSIRIS layer are shown in Figure 3.

Fig. 3. The hyperdatabase layer in the OSIRIS implementation

3 Search Engine and the ETH World Information Space

A good example for an information space is the virtual campus of ETH within the
ETHWorld project [6]. The virtual campus is a meeting place, the information space
for students, assistants, professors, researchers, alumni and other interested people.
The participants of the information space occur in two roles: as information providers
and as information searchers. Search engines are mediators between them. ETHWorld
not only supports textual searches but also visual ones. Participants are able to search
with photos, images, or drawings.

Persistent
Storage

Co
m

m
un

ic
at

io
n

La
ye

r

Service
Management

Module

Service
Management

Module

Replication ModuleReplication Module

Service
Navigation

Module

Service
Navigation

Module

A B

Load
Balancing
Module

Load
Balancing
Module

Data Flow Module

Co
m

m
un

ic
at

io
n

La
ye

r

Service
Instance D B K

D
B
...

On
Off
...

129.117.3.8
134.34.3.11

...

ExtCol
ExtShp

D
B

K

Persistent
Storage

Co
m

m
un

ic
at

io
n

La
ye

r

Service
Management

Module

Service
Management

Module

Replication ModuleReplication Module

Service
Navigation

Module

Service
Navigation

Module

A B

Load
Balancing
Module

Load
Balancing
Module

Data Flow Module

Co
m

m
un

ic
at

io
n

La
ye

r

Service
Instance D B KD B K

D
B
...

On
Off
...

129.117.3.8
134.34.3.11

...

D
B
...

On
Off
...

129.117.3.8
134.34.3.11

...

ExtCol
ExtShp

D
B

K

 The Hyperdatabase Network 45

In our part of the ETHWorld project we study and contribute similarity searches in
multimedia documents as they are found in various web sites of ETH. The ISIS sys-
tem (Interactive SImilarity Search) [7], part of OSIRIS, offers effective descriptors
for the different kinds of document components and efficient search infrastructure for
complex similarity searches. [8,9,10,11]. Complex similarity search means that a user
may refer to several feature types and he/she may use several example objects as a
query. We call this a multi-feature, multi-object query. In addition, user-friendly rele-
vance feedback mechanisms, supported by information visualization, are built in.

In contrast to traditional web search engines that keep their data periodically up-to-
date with the consequence of outdated information and dangling links, the ISIS search
engine is maintained by the OSIRIS middleware. Changes in the information space
are automatically and guaranteed propagated to all nodes as soon as possible. OSIRIS
monitors local changes and triggers related maintenance processes that keep search
indexes up-to-date.

Fig. 4 shows an insertion of a new molecule image and the related service invoca-
tions of this maintenance process. The features and context of the image are analyzed
(e.g. texture, color, shape, surrounding text, links) and special search structures are
updated accordingly. The ETHWorld case study also exemplifies that source infor-
mation collections must be connected to computation intensive services for text clas-
sification, term extraction, image processing. Any time new services can be added to
the system.

Fig. 4. OSIRIS/ISIS in the ETHWorld application

 The hyperdatabase infrastructure takes care of the correct execution of processes.
We do not apply a 2PC protocol because the subsystems are autonomous. Instead, we
make sure that a process, once started will come to a well-defined termination, even in
case of concurrent processes or in case of failures. We call this generalized atomicity

46 H.-J. Schek

and isolation. Beyond maintenance processes we have various user processes. They
are handled with the same mechanisms. Examples are search processes over many
search engines or electronic registration, similar to administrative workflow, or the
production of reports. We use a graphical interface for process definition and verifica-
tion [12].

Acknowledgement

Many individuals, students and members of the DBS Group, have contributed. Spe-
cial thanks go to Klemens Böhm, Gert Brettlecker, Michael Mlivoncic, Heiko
Schuldt, Christoph Schuler, Can Türker and Roger Weber.

References

1. H.-J. Schek, H. Schuldt, R. Weber. Hyperdatabases – Infrastructure for the Information
Space. In: Proc. 6th IFIP Working Conf. on Visual Database Systems, S. 1–15, 2002.

2. H.-J. Schek, H. Schuldt, C. Schuler, C. Türker, R. Weber. Hyperdatenbanken zur Verwal-
tung von Informationsräumen. it-Information Technology, 2004.

3. H.-J. Schek and H. Schuldt and C. Schuler and R. Weber: Infrastructure for Information
Spaces. In: Proceedings of the 6. East-European Conference on Advances in Databases and
Information Systems (ADBIS'2002), Bratislava, Slovakia, September 2002.

4. H. Schuldt, G. Alonso, C. Beeri, H.-J. Schek. Atomicity and Isolation for Transactional
Processes. ACM Transactions on Database Systems, 27(1):63–116, March 2002.

5. C. Schuler, R. Weber, H. Schuldt, H.J. Schek: Scalable Peer-to-Peer Process Management
The OSIRIS Approach. In: Proc. of IEEE International Conference on Web Services
(ICWS), San Diego, California, USA, July 2004.

6. ETHWorld – The Virtual Campus of ETH Zürich. http://www.ethworld.ethz.ch.
7. ISIS – Interactive Similarity Search. http://www.isis.ethz.ch.
8. R. Weber, H.-J. Schek, S. Blott. A Quantitative Analysis and Performance Study for

Similarity Search Methods in High-Dimensional Spaces. In: Proc.24th Int. Conf. on Very
Large Data Bases, New York, Sept. 1998.

9. Weber, M.Mlivoncic: Efficient Region-Based Image Retrieval. 12th International Confer-
ence on Information and Knowledge Management (CIKM'03), New Orleans, LA, USA,
November 2003.

10. K. Böhm, M. Mlivoncic, H.-J. Schek, R. Weber: Fast Evaluation Techniques for Complex
Similarity Queries. 27th Int. Conf. on Very Large Databases (VLDB), Roma, Italy, Sep-
tember 2001.

11. M. Mlivoncic, C. Schuler, C. Türker: Hyperdatabase Infrastructure for Management and
Search of Multimedia Collections. Digital Library Architectures: Peer-to-Peer, Grid, and
Service-Orientation, Proc. of the Sixth Thematic Workshop of the EU Network of Excel-
lence DELOS on Digital Library Architectures, S. Margherita di Pula (Cagliari), Italy,
June 2004.

12. R. Weber, C. Schuler, H. Schuldt, H.-J. Schek, P. Neukomm. Web Service Composition
with O'GRAPE and OSIRIS. In: Proc. 29th Int. Conf. on Very Large Data Bases, Berlin,
Sept. 2003.

Architecture of a Business Framework
for the .NET Platform and Open Source

Environments

Thomas Seidmann

Cdot AG, Wilen SZ, Switzerland
Thomas.Seidmann@cdot.ch

http://www.cdot.ch/thomas

Abstract. This paper contains a description of the architecture and
components of a software framework for building enterprise style appli-
cations based on the .NET platform. The process and achieved results
of porting this business framework to an open source platform based on
GNU/Linux/Mono is described as well.

1 Introduction

Many software companies focused on building potentially large distributed data-
driven applications are faced similar problems during the life cycle of their
projects: the technology they use as a base for their solutions does not provide
all the necessary abstractions or their abstraction level is too low. Usually they
end up with a framework, in many cases even more of them in various projects,
often depending on the particular project members involved in them. This fact
leads to software maintenance problems as well as internal incompatibilities. To
fill this gap we’ve developed a business framework (in further text referred to as
‘framework’) for so called enterprise application as a part of a broader product
called Cdot-InSource, which comprises in addition to the business framework
also services like education, project analysis, design and jump starting the im-
plementation and consulting. The business framework part of Cdot-InSource
is based on the .NET Framework platform authored by Microsoft and can be
used as a foundation for a wide variety of applications, which might (but don’t
necessarily have to) employ Web services.

The outline of the rest of this paper is as follows. In section 2 we’ll give
an overview of the overall architecture of the framework contained in Cdot-
InSource. Section 3 contains the description of the building blocks contained
in the framework. Section 4 explains the blueprints for building and testing
real-life applications using the framework. In section 5 we’ll explain extending
possibilities of the framework with respect to platform changes and additional
requirements. Finally, in section 6 we’ll described the objectives and effort of
porting the framework to an open source platform as well as the current state
and lessons learned so far. We conclude the paper with some thoughts of working
in a “virtual company” and its social consequences.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 47–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 T. Seidmann

2 Architecture of the Business Framework

The architecture of the framework can best be explained based on applications it
is intended for. We are looking at typical multi-tier applications with a relational
DBMS used as a data store, a hierarchy of business services built on stateless
components, a web service tier used as an entry point to the service layer and
a set of client (front-end) applications. Figure 1 illustrates this architecture and
also gives some hints about the platform support and contains some forward
references to the next section.

Fig. 1. Cdot-InSource architecture

The web service tier exhibits high adherence to current standards as formu-
lated by the WS-I consortium. For example instead of inventing own authentica-
tion mechanisms, WS-Security is used for this purpose. When using Microsoft’s
ASP.NET implementation, this tier is normally hosted in the Internet Informa-
tion Server (IIS), although other alternatives exist as well (see section 6). In
addition to authentication, web services are usually responsible for authoriza-
tion, although this task may be also delegated to the business services. It is of
crucial importance that no business logic is implemented in the web service code
itself, but delegated to the business services instead. The web service tier may
form a hierarchy of layers (by aggregating simpler services into complex ones),
but normally this won’t be the case.

Architecture of a Business Framework for the .NET Platform 49

The business service tier can and usually will be structured into some hier-
archy of layers with data access components (normally using DBMS-native data
providers and protocols for accessing the data store) at the bottom and com-
ponents performing complex business logic at the top. As already mentioned
before, components of this tier are supposed to be stateless in order to achieve
scalability of the whole system. There may be exceptions to this rule, for exam-
ple in case of some special singleton objects, but generally state should be kept
either in the database or in the client tier. To allow for higher scalability and/or
integration with external systems the business service tier may (even partially)
utilize middleware services like COM+ for functionality like distributed trans-
actions or message queuing. Hosting of the business service components can be
accomplished in a variety of ways starting from in-process with respect to the
web service code, through an operating system service up to hosting in the mid-
dleware services. The same goes for the communication between these two layers,
which can be done with .NET remoting or middleware-provided protocols (for
example DCOM).

The primary client tier platform is, as in the case of the previous two tiers,
the .NET framework, thus effectively forming a thin .NET client (also known
as Windows Forms client). .NET offers advanced techniques for distributing
portion of client code over a network, which can be used for zero (sometimes
called ‘no touch’) deployment of front-end programs. As shall be seen in section
6, efforts are being undertaken for enabling platforms other than .NET to be
able to execute .NET managed code.

Passing data between the various tiers is based on the notion of ADO.NET
datasets, which represent an in-memory database with excellent serialization
mechanisms for communication as well, even via web services. Thus instead of
inventing own value object types, datasets (both strongly typed and untyped) are
used for this purpose. The support for Java clients, although depicted on figure
1, is currently limited, due to the lack of dataset functionality. This problem of
toolkit compatibility is tackled as well.

3 Components of the Framework

Flowing from the previous section, all program code contained in the business
framework consists of MSIL, so called managed code. The basic components of
the framework in the context of Cdot-InSource are depicted on figure 2, forming
the central part of the picture. These components can be described as follows:

– Cdot.Security contains code augmenting the WS-Security implementation
as well as an authorization sub-framework for performing RBAC (Role Based
Access Control) independently from the one contained in .NET. This com-
ponent is used by the client, web service and business service tiers.

– Cdot.Base represents an abstraction layer above ADO.NET for database
access offering data provider independence to some extent, thus making the
task of porting to a different DBMS platform easier. This component should
be used only by program code of the business service tier.

50 T. Seidmann

– Cdot.Office contains glue code and abstraction shims for interaction with
the operating system shell (Windows, X11) and some office productivity
software systems (MS Office, OpenOffice). Both the use by the client tier as
well as the business services is thinkable.

– Cdot.Util is the biggest component in terms of class count and is currently
dedicated to .NET (Windows Forms) clients. This reaches from zero deploy-
ment support code through specialized user input widgets (controls) to a
user interface configuration and internationalization sub-framework.

Fig. 2. Cdot-InSource components

Not shown on the figure are various third party components the framework
relies in addition to the .NET platform. A complete enumeration of such com-
ponents is clearly outside of the scope of this paper. Let us just mention on
noticeable component: a grid library. Data driven enterprise applications often
need a way to represent data in a tabular form using some kind of a data grid.
Cdot.Util contains a shim layer offering virtually the same programming inter-
face on top of various underlying grid implementations, which simplifies their
replacement in client code. One of those grid implementations (actually the pre-
ferred one) resides in a third party component library. Another example of a third
party component is a report generator, which we integrated into the framework
instead of writing our own one.

Architecture of a Business Framework for the .NET Platform 51

4 Building and Testing Enterprise Applications Based
on the Framework

In the previous section, figure 2 contains an important architectural component
in the right central part of the picture – templates for service- (server-) and
client-side code which serve as a blueprint for building applications. Although
not covering every last detail of the framework, these templates represent a
major help in starting a new project from the ground. Besides showing the way
to structure the code in the various layers of an application they also stress out
the importance of including testing code from the very beginning of the coding
phase based on the principle of unit testing. A third-party (open source) unit
testing tool called NUnit 1 is used for this purpose. Including testing code is
deemed important particularly in the service component code and the templates
show the way of accomplishing this task.

Unit testing is employed also inside the framework itself for the purpose of
regression tests. Next section contains some notes on this.

In addition to templates and (simple) code samples for the various compo-
nents of the business framework a complex sample is available, which should
serve as a demonstration of the use of the whole framework. This sample con-
tains the implementation of all tiers as described in section 2.

5 Extensibility of the Framework

The business framework of Cdot-InSource shouldn’t be viewed as a static piece
of code. Instead, it is a dynamical system evolving in time; additions and modi-
fications are performed on a daily basis. Of course, since users of the framework
are depending on the stability of their platform, some stringent rules have to be
followed by the framework developers: incompatible changes should be avoided
as far as possible and regression tests should be run after every significant change
of the framework code to insure that previous functionality is still guaranteed.
New functionality must come hand in hand with corresponding new testing code.

6 Porting the Framework to the MONO Platform

While .NET is widely accepted as an application platform, there are exceptions
to this. The call for an alternative to platforms authored by Microsoft can some-
times and someplace be clearly heard. Until these days the only possible usable
answer was the switch to the Java platform. The state of the MONO project
2 changes the view of things slightly. This project is aimed at offering an open
source alternative (binary compatible) to .NET, developed mainly on top of
GNU/Linux, running on a wide range of operating system platforms including
even Windows.

1 http://www.nunit.org
2 http://www.go-mono.com

52 T. Seidmann

The promising state of the MONO project lead directly to the idea of using
the very same business framework on this platform in addition to .NET. We will
denote the adaptation process as porting even though the aim is to use exactly
the same MSIL files (assebmlies) on both platforms.

The porting process comprises following problems to be solved:

1. Enabling the Web service and application server components to execute on
MONO.

2. Enabling the client components, which normally are Windows Forms appli-
cation components, to be able to execute in the Mono environment.

The first item turned out to be pretty straightforward with MONO version
1.0. We have managed to get the web service and business service tiers of an ap-
plication to run on GNU/Linux, utilizing the Apache web server for the former.
The business service tier in this particular application was originally hosted in a
Windows service, so we’ve adapted it to execute as a background process (dae-
mon) employing .NET remoting for the communication with the web server. The
only real problem turned out to be the WS-Security implementation contained
within MONO, which we had to modify and augment with missing functionality.

The second item is much more complicated and tricky, since the state of
Windows Forms emulation in MONO by means of the Windows emulator Wine
3 is very immature and also due to the fact, that there is a number of third
party components used with Cdot-InSource which must be taken as-is without
the possibility to adapt them to MONO. This item is subject to work-in-progress
right now.

7 Conclusions and Future Work

The Cdot-InSource business framework is evolving in time, but the platform
is evolving and changing as well. Already today the extent of the next major
overhaul of the .NET platform in Windows Longhorn can be glimpsed. It is the
job of a good business framework to cope with such platform changes and offer
the access to technologies as WinFX or Indigo with little or no impact on client
code to the framework.

An interesting aspect of the business framework apart of its actual func-
tionality and contents is the relationship to customers. It is not meant as a
shrink-wrapped off-the shelf product, but instead it is based on a partnership
model with customers. That way, with a relatively small number of customers
(a maximum of several tens), it is possible to react on their needs and let flow
the fulfillment of theses needs into the framework. It seems, that this customer
relationship model is quite attractive and appreciated, since we’ve encountered
positive feedback on this in many places.

3 http://www.winehq.com

Progress on Crossing Number Problems�

László A. Székely

University of South Carolina, Columbia, SC 29208, USA
szekely@math.sc.edu

Abstract. Crossing numbers have drawn much attention in the last
couple of years and several surveys [22], [28], [33], problem collections
[26], [27], and bibliographies [40] have been published. The present survey
tries to give pointers to some of the most significant recent developments
and identifies computational challenges.

1 Computational Complexity

To avoid repetitions, we assume that the Reader has already some familiarity
with crossing numbers. Earlier surveys [22], [27], [28] or [33] contain lots of
important information not shown here.

The crossing number of a graph, CR(G), is the minimum number of edge
crossings, in any drawing of a graph in the plane, where every crossing point is
counted for every pair of edges crossing there. Crossing numbers, introduced by
Paul Turán 60 years ago [38], studied in graph theory, and then in the theory of
VLSI, have become the most important graph parameter measuring the devia-
tion from planarity. Pach and Tóth [24] (and independently Mohar) introduced
two new variants of the crossing number problem:
the pairwise crossing number CR-PAIR(G) is equal to the minimum number of
unordered pairs of edges that cross each other at least once (i.e. they are counted
once instead of as many times they cross), over all drawings of G; and
the odd crossing number CR-ODD(G) is equal to the minimum number of un-
ordered pairs of edges that cross each other odd times, over all drawings of G
where edges touching each other in a common point is forbidden.

In Tutte’s work [39] another kind of crossing number is implicit:
the independent-odd crossing number CR-IODD(G) is equal to the minimum
number of unordered pairs of non-adjacent edges that cross each other odd times,
over all touching-free drawings of G. The inequalities immediately follow from
the definitions:

CR-IODD(G) ≤ CR-ODD(G) ≤ CR-PAIR(G) ≤ CR(G). (1)

No example of strict inequality is known. Pach [22] considers the problem of
equality in (1) to be the most important open problem on crossing numbers.

� This research was supported in part by the NSF grant DMS 0302307.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 53–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

54 L.A. Székely

Open Problem 1. Use computational tools to find strict inequalities in (1).

The difficulty of Problem 1 lies in the fact that the problem CR(G) ≤ k is
NP-complete if k is part of the input, see Garey and Johnson [14]. (Pach and
Tóth [24] extended this result to CR-ODD, and also proved that CR-PAIR
is NP-hard.) It has been known that testing planarity, and therefore testing
CR(G) ≤ k for any fixed k can be done in polynomial time. A recent algorithm
of Grohe [15] tests CR(G) ≤ k for any fixed k in quadratic time.

Leighton and Rao [18] designed the first provably good approximation algo-
rithm for crossing numbers. This algorithm approximates n + CR(G), where n
is the number of vertices, within a factor of log4 n for degree bounded graphs.
A recent paper of Even, Guha, and Schieber [11] reduced the factor to log3 n.

Open Problem 2. Is there an approximation algorithm for n + CR(G) within
constant multiplicative factor, for degree bounded graphs?

Note that the term n dominates n+CR(G) if the crossing number is small, and
therefore the approximation provides nothing in this case.

Open Problem 3. Is there an approximation algorithm for CR(G), if CR(G)
is small?

A negative error term of sum of degree squares is present in the bisection width
lower bound for the crossing number—this is the source of n in n + CR(G)
above. Pach and Tóth [26] asked if this sum of degree squares can be reduced,
but noted that it cannot go below n. Mysteriously, the sum of degree squares
also comes in as negative error term in the embedding method [28], although
we did not write it there in this way and just used an upper bound for it. In
a third way, the sum of degree squares is a negative error term in the lower
bound for the convex (alternatively, outerplanar or one-page) crossing number
[29]. (The convex crossing number problem requires the placement of the vertices
on a circle and edges are drawn in straight line segments.)

In view of the NP-completeness of testing CR(G) ≤ k, it is no surprise that
we have in general no short proofs to tight lower bounds for crossing numbers.
However, hard problems often have interesting and efficiently tractable special
cases. I suggest further analysis of the following optimality criterion [35]:

Let us be given a touching-free drawing D of the simple graph G, in which
any two edges cross at most once, and adjacent edges (edges with an endpoint
in common) do not cross. Let us associate with every edge e = {x, y} ∈ E(G) an
arbitrary vertex set Ae ⊆ V (G) \ {x, y}. If the edges e and f are non-adjacent,
then we define the parity of this edge pair as 0 or 1 according to

par(e, f) = |e ∩Af |+ |f ∩Ae| modulo 2. (2)

If non-adjacent edges e, f cross in D, then we write e ×D f , otherwise write
e||Df .

Progress on Crossing Number Problems 55

Theorem 1. Using the notation above, the condition that for all choices of the
sets Ae the inequality ∑

par(e,f)=1
e×Df

1 ≤
∑

par(e,f)=1
e||Df

1 (3)

holds, implies that D realizes CR(G).

It is hard to verify whether this criterion holds, since checking the condition
for all possible sets Ae requires exponential time. However, inequality (3), which
looks like a correlation inequality formulated about random edge pairs, may
have a less exhaustive and more theoretical proof for some graphs and their
drawings, if they show a high degree of structure. A natural candidate would be
Zarankiewicz’ drawing [32] of the complete bipartite graph, which is conjectured
to be optimal.

Open Problem 4. Find graph and drawing classes for which (3) can be verified
in polynomial time.

(Note that if Theorem 1 applies, then CR(G) = CR-IODD(G).) Sergiu Norine
has found an optimality criterion that seems to be different from (3) for complete
bipartite graphs.

2 Origin of Lower Bounds

It is easy to prove by induction that a graph on n ≥ 3 vertices and m edges has
crossing number ≥ m− 3n + 6. The base case is that a graph with 3n− 5 edges,
which must be non-planar, and must have crossing number ≥ 1. Ajtai et al. [3]
and Leighton [17] independently discovered that for graphs with m ≥ cn edges,
the crossing number is at least

CR(G) ≥ c− 3
c3

m3

n2 . (4)

A folklore probabilistic proof for (4) can be found in [28] and in [2]. The best
current constant in (4) is 1

33.75 for m ≥ 7.5n, due to Pach and Tóth [25].
Once I had a discussion with János Pach on what is the origin of lower bounds

for crossing numbers. He thought bisection width, I thought Leighton’s bound
(4). (Since then, I proved using Leighton’s bound (4) the following theorem of
Pach, Spencer and Tóth [23] that was first proved by the bisection width bound:
if G has girth > 2r and m ≥ 4n, then CR(G) = Ω(mr+2/nr+1) [34].) However,
there is no doubt that Euler’s formula is behind every lower bound. Therefore,
I would find instructive

Open Problem 5. Prove from first principles that a graph on n vertices, drawn
in the plane in straight line segments without crossings, has at most O(n) edges.

Among “first principles” I disallow the theory of planar graphs, Euler’s for-
mula, etc. What I allow is using coordinates of points, pigeonhole principle, and
the observation that two line segments cross if it follows from calculations with
the coordinates of their endpoints.

56 L.A. Székely

3 The Rectilinear Revolution

A well-known theorem of Fáry [13] asserts that a graph is planar if and only
if it admits a planar drawing in straight line segments. Bienstock and Dean [7]
showed that if CR(G) ≤ 3, then G admits a straight line drawing realizing its
crossing number, but there exists graphs with crossing number 4 that require
any prescribed number of crossings in any straight line drawing. Therefore, it
is necessary to introduce the rectilinear crossing number CR-LIN(G), which is
the minimum number of crossings of G in any straight line drawing. Clearly
CR(G) ≤ CR-LIN(G).

Ábrego and Fernández-Merchant [1] made a breakthrough by showing CR-
LIN(Kn) ≥ 1+o(1)

64 n4, the conjectured lower bound for CR(Kn). Lovász, Veszter-
gombi, Wagner and Welzl [19] improved the lower bound by showing
CR-LIN(Kn) ≥ (1

64 + 10−5

24 + o(1))n4, separating CR(Kn) from CR-LIN(Kn).
Balogh and Salazar [6] increased the tiny separation of Lovász et al. manifold.

These new lower bounds are based on lower bounds on the number of planar
k-sets. The k-set problem asks what is the largest possible number of k-element
subsets of a set of n points in general position in the plane, which can be sep-
arated from the remaining n − k by a straight line. Crossing numbers are also
useful for k-sets, since the best upper bound for the number of k-sets, Dey [9]
uses the crossing number method discussed in Section 4.

Aichholzer, Aurenhammer, and Krasser [4] developed a description of relative
point locations in the plane, called order types, which allowed them to evaluate
CR-LIN(K11) = 102 and CR-LIN(K12) = 153. Aurenhammer maintains the
rectilinear crossing number webpage [5], which gives exact values of or lower and
upper bounds to CR-LIN(Kn), up to n = 45. Optimal drawing(s) also can be
downloaded from [5].

Open Problem 6. Make a conjecture for the rectilinear crossing number of
Kn.

Shahrokhi, Sýkora, Székely, and Vrťo [29] showed that for the convex crossing
number CR∗(G) (defined in Section 1),

CR∗(G) = O([CR(G) +
∑

v

d2
v] log n). (5)

Since we have CR(G) ≤ CR-LIN(G) ≤ CR∗(G), we have that notwithstand-
ing the examples of Bienstock and Dean [7] cited above, in “non-degenerate”
cases there is at most a log n times multiplicative gap between the crossing
number and the rectilinear crossing number. It is worth noting that the estimate
in (5) is tight for an n × n grid [29]. This example is kind of degenerate since
the error term dominates the RHS. However, several examples have been found
where CR-LIN(G) = Θ(CR(G) log n) [8].

Progress on Crossing Number Problems 57

4 Szemerédi-Trotter Type Theorems

I introduced the crossing number method [31] to prove Szemerédi–Trotter type
theorems. The method requires setting lower and upper bounds for the crossing
number of some graph, in order to get a bound for extremal problem. The lower
bound is usually (4). For example, the original Szemerédi-Trotter theorem [36]
claims that

Theorem 2. For n points and l straight lines in the Euclidean plane, the number
of incidences among the points and lines is O({nl}2/3 + n + l).

Proof. The proof is quoted from [31]. We may assume without loss of generality
that all lines are incident to at least one point. Let #i denote the number of
incidences among the points and the lines. Define a graph G drawn in the plane
such that the vertex set of G is the set of the given n points, and join two
points with an edge drawn as a straight line segment, if the two points are two
consecutive points on one of the lines. This drawing shows that cr(G) ≤

(
l
2

)
. The

number of points on any of the lines is one plus the number of edges drawn along
that line. Therefore the total number of incidences minus l is a lower bound for
the number of edges in G. Formula (4) finishes the proof: either 4n ≥ #i− l or
CR(G) ≥ 1

64 (#i− l)3/n2. �

Theorem 2 clearly applies in every situation where we substitute the lines
with curves, such that any two curves intersect in at most α points, and any two
points are contained at most β curves, where α and β are fixed constants. For
example, α = β = 2, if we deal with translates of a strictly convex closed curve.
This is the case if we consider incidences of unit circles and points.

A famous problem of Erdős [12] in geometry asks how many unit distances
can be among n points in the plane. Given a point set with u unit distances,
draw unit circles around the points. Clearly the number of incidences among the
n points and the n unit circles is 2u. However, the extension of the Szemerédi-
Trotter theorem discussed above implies that 2u = #i = O(n4/3), the best
known estimate [30], which falls short of the conjectured n1+ε for every ε > 0.

Iosevich [16] gives an excellent survey of the many applications of the Sze-
merédi-Trotter theorem to analysis, number theory, and geometry. Here we cite
one beautiful application to number theory that is relevant for our further dis-
cussion. Elekes [10] proved that

Theorem 3. Any n distinct real numbers have Ω(n1.25) distinct sums or prod-
ucts.

Proof. Let A denote a set of n real numbers. Consider the point set P =
{(ab, c + d) : a, b, c, d ∈ A} and the line set L = {{(et, f + t) : t ∈ R} :
e, f ∈ A}, where the inner set is a straight line given in parametric form. Clearly
every line passes through n points from P , so n3 ≤ #i. On the other hand,
#i = O({|P ||L|}2/3 + |P | + |L|). Since |L| = n2, simple algebra yields that
|P | = Ω(n2.5). However, P is the Cartesian product of the sets A ·A and A+A,
and therefore one of these sets is as large as required. �

58 L.A. Székely

5 Complex Szemerédi-Trotter Theorem

Is Theorem 3 valid for complex numbers? Elekes’ proof would immediately give
a positive answer if Theorem 4 is still valid for points and lines in a plane above
the complex field. Note that a stronger bound cannot hold in the complex case,
since Theorem 4 is tight within a multiplicative constant over the whole range
of n and l [21]. Any sets of real points and real lines are also sets of complex
points and complex lines, where the imaginery parts happen to be zero.

Csaba Tóth announced a proof to the complex Szemerédi-Trotter theorem a
few years ago but the result has not been published yet [37]. The proof mimicks
the original hard proof of Szemerédi and Trotter from [36], but every geometric
step is more involved.

It is a natural question whether the crossing number method admits a com-
plex analogue. The crucial point is that we miss a concept corresponding to
graph drawing.

Perhaps an analogue to the planar straight line drawing could be the fol-
lowing. We draw a triplet system in C2 instead of a graph. The vertices of the
triplet system are represented by points in C2. All 3 vertices of every triplet must
be on a complex line. As the complex plane is isomorphic to R4, we represent
the triplet by the convex hull of its vertices in R4. We require that triangles
representing triplets share only a common vertex or a common edge.

Open Problem 7. Show that there exists a constant K, such that a triplet
system on n vertices, drawn as above, has at most Kn triplets.

This could be the analogue of the fact that a planar graph can have only
linear number of edges. This seems to be a more formidable problem. Solution to
Problem 5 can give hint on how to proceed with Problem 7. The analogue of the
straight line drawing allowing crossings could be the following, that I call a linear
triplet drawing: triplets drawn as above may share a vertex, an edge, or may have
a single crossing point which is not a vertex of either of them. Clearly a linear
triplet drawing with m triplets and n vertices have at least m−Kn crossings (if
Problem 7 is answered affirmatively). We are going to make an analogue to the
probabilistic folklore proof of (4). Assume m ≥ 2Kn for a linear a triplet drawing
with c crossings. Pick vertices independently with probability p =

√
2Kn/m.

By our choice of p, we have m/p3 = 2Kn/p5. Consider a triplet picked, if all
3 vertices are picked. The picked vertices in this way define an induced triplet
system and an induced drawing of it. The number of vertices n′, the number of
edges m′, and the number of crossings c′ in the induced subdrawing are random
variables. For any case, we have the following inequality between our random
variables: c′ ≥ m′−Kn′. Taking expectation, we obtain p6c ≥ p3m−Kpn. Doing
the algebra, we obtain a counterpart of (4): c ≥ m/(2p3) = m5/2

2(2K)3/2n3/2 .
Let us see how to prove a counterpart of Theorem 4 modulo the claim above.

Consider n points and l lines in the complex plane. We may assume without
loss of generality that all lines are incident to at least one point. Within every
complex line containing at least 3 points, build a triangulation on the points as
vertices. The number of triangles is between linear functions of the number of

Progress on Crossing Number Problems 59

points on that complex line, if there are at least 3 points on the complex line.
Hence #i = Θ(m) − 2l, where m is the total number of triangles (or triplets)
created, and #i is the total number of incidences. l complex lines have at most(

l
2

)
crossings, but the number of crossings is at least

Ω

(
(Θ(#i)− 2l)5/2

n3/2

)

or m ≤ 2Kn. In the second case #i = O(n + l), and in the first case #i =
O(n + l + l4/5n3/5). Unfortunately, the last formula is not symmetric in n and
l. However, using the point-line duality, we also have #i = O(n + l + n4/5l3/5).
Combining them #i = O(n + l + (nl)7/10), which is somewhat weaker than
Theorem 4.

Acknowledgment.I thank Éva Czabarka for a careful reading of themanuscript.

References

1. Ábrego, B. M., and Fernández-Merchant, S., A lower bound for the rectilinear
crossing number, manuscript.

2. Aigner, M., Ziegler, G. M., Proofs from the Book, Springer-Verlag, Berlin, 1998.
3. Ajtai, N., Chvátal, V., Newborn M., and E. Szemerédi, E., Crossing-free subgraphs,

Annals of Discrete Mathematics 12 (1982) 9–12.
4. Aichholzer, O., Aurenhammer, F., and Krasser, H., On the crossing number of

complete graphs, in: Proc. Ann. ACM Symp. Computational Geometry, 19–24,
Barcelona, Spain, 2002.

5. Aurenhammer, F., On the Rectilinear Crossing Number,
http://www.igi.tugraz.at/auren/

6. Balogh, J., and Salazar, G., On k-sets, convex quadrilaterals, and the rectilinear
crossing number of Kn, submitted.

7. Bienstock, D., Dean, N., Bounds for rectilinear crossing numbers, J. Graph Theory
17 (1991), 333–348.

8. Czabarka, É., Sýkora, O., Székely L. A., and Vrťo, I., Convex crossing Numbers,
circular arrangement problem, and isoperimetric functions, submitted.

9. Dey, T., Improved bounds for planar k-sets and related problems, Discrete Comput.
Geom. 19 (1998) 373–382.

10. Elekes, G., On the number of sums and products, Acta Arithm. 81 (1997)(4) 365–
367.

11. Even, G., Guha, S., Schieber, B., Improved approximations of crossings in graph
drawings and VLSI layout areas, in: Proc. 32nd Annual Symposium on Theory of
Computing, STOC’00 (ACM Press, 2000) 296–305.

12. Erdős, P., On sets of distances of n points, Amer. Math. Monthly 53(1946), 248–
250.

13. Fáry, I., On straight line representations of graphs, Acta Univ. Szeged Sect. Sci.
Math. 11 (1948) 229–233.

14. Garey, M. R., and Johnson, D. S., Crossing number is NP-complete, SIAM J. Alg.
Discrete Methods 4 (1983) 312–316.

60 L.A. Székely

15. Grohe, M., Computing crossing numbers in quadratic time, Proc. 32nd Annual
ACM Symposium on the Theory of Computing, STOC’01, 231–236.

16. Iosevich, A., Fourier analysis and geometric combinatorics, to appear.
17. Leighton, F. T., Complexity Issues in VLSI, (MIT Press, Cambridge, 1983).
18. Leighton, F. T., and Rao, S., An approximate max flow min cut theorem for

multicommodity flow problem with applications to approximation algorithm, in:
Proc. 29th Annual IEEE Symposium on Foundations of Computer Science (IEEE
Computer Society Press, Washington, DC, 1988) 422–431, and J. ACM 46 (1999)
787–832.

19. Lovász, L., Vesztergombi, K., Wagner, U., and Welzl, E., Convex quadrilaterals
and k-sets, in: Towards a Theory of Geometric Graphs, ed. J. Pach, Contemporary
Mathematics 342, Amer. Math. Soc. 2004, 139–148..

20. A. Owens, On the biplanar crossing number, IEEE Transactions on Circuit Theory
CT-18 (1971) 277–280.

21. Pach, J., and Agarwal, P. K., Combinatorial Geometry, Wiley and Sons, New York,
1995.

22. Pach, J., Crossing numbers, in: Discrete and Computational Geometry Japanese
Conference JCDCG’98, Tokyo, Japan, December 1998, eds. J. Akiyama, M. Kano,
M. Urabe, Lecture Notes in Computer Science Vol. 1763 (Springer Verlag, Berlin,
2000) 267–273.

23. Pach, J., Spencer, J., and Tóth, G., New bounds on crossing numbers, Proc. 15th
ACM Symposium on Computational Geometry (ACM, 1999) 124–133; and Discrete
Comp. Geom. 24 (2000) 623–644.

24. Pach, J., and Tóth, G., Which crossing number is it anyway? in: Proc. 39th
Annual Symposium on Foundation of Computer Science, (IEEE Press, Baltimore,
1998) 617–626; and J. Comb. Theory Ser B 80 (2000) 225–246.

25. Pach, J., and Tóth, G., Graphs drawn with few crossings per edge, Combinatorica
17 (1997) 427–439.

26. Pach, J., Tóth, G., Thirteen problems on crossing numbers, Geombinatorics 9
(2000) 194–207.

27. Richter, R. B., and Salazar, G., A survey of good crossing number theorems and
questions, manuscript.

28. Shahrokhi, F., Sýkora, O., Székely, L. A. and Vrťo, I., Crossing numbers: bounds
and applications, in: Intuitive Geometry, eds. I. Bárány and K. Böröczky, Bolyai
Society Mathematical Studies 6 (János Bolyai Mathematical Society, Budapest,
1997) 179–206.

29. Shahrokhi, F., Sýkora, Székely, L. A., and Vrťo, I., The gap between the cross-
ing number and the convex crossing number, in: Towards a Theory of Geometric
Graphs, ed. J. Pach, Contemporary Mathematics 342, Amer. Math. Soc. 2004,
249–258.

30. Spencer, J., Szemerédi, E., Trotter, W. T., Unit distances in the Euclidean plane,
in: Graph Theory and Combinatorics (B. Bollobás, ed.), Academic Press, London,
1984, 293–308.

31. Székely, L. A., Crossing numbers and hard Erdős problems in discrete geometry,
Combinatorics, Probability and Computing 6 (1997) 353–358.

32. Székely, L. A., Zarankiewicz crossing number conjecture, in: Kluwer Encyclopaedia
of Mathematics, Supplement III Managing Editor: M. Hazewinkel Kluwer Aca-
demic Publishers, 2002, 451–452.

33. Székely, L. A., A successful concept for measuring non-planarity of graphs: the
crossing number, Discrete Math. 276 (2003), 1–3, 331–352.

Progress on Crossing Number Problems 61

34. Székely, L. A., Short proof for a theorem of Pach, Spencer, and Tóth, in: Towards a
Theory of Geometric Graphs, ed. J. Pach, Contemporary Mathematics 342, Amer.
Math. Soc. 2004, 281–283.

35. Székely, L. A., An optimality criterion for the crossing number, submitted.
36. Szemerédi, E., Trotter, W. T., Extremal problems in discrete geometry, Combina-

torica 3 (1983) 381–392.
37. Tóth, C. D., The Szemerédi-Trotter theorem in the complex plane, manuscript.
38. Turán, P., A note of welcome, J. Graph Theory 1 (1977) 7–9.
39. Tutte, W. T., Toward a theory of crossing numbers, J. Combinatorial Theory 8

(1970) 45–53.
40. Vrťo, I., Crossing Numbers of Graphs: A Bibliography

http:/sun.ifi.savba.sk/~imrich/

Greedy Differential Approximations for
Min Set Cover

C. Bazgan, J. Monnot, V. Th. Paschos, and F. Serrière

LAMSADE, Université Paris-Dauphine,
Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France

{bazgan, monnot, paschos, serriere}@lamsade.dauphine.fr

Abstract. We present in this paper differential approximation results
for min set cover and min weighted set cover. We first show that
the differential approximation ratio of the natural greedy algorithm for
min set cover is bounded below by 1.365/Δ and above by 4/(Δ +
1), where Δ is the maximum set-cardinality in the min set cover-
instance. Next, we study an approximation algorithm for min weighted
set cover and provide a tight lower bound of 1/Δ.

1 Introduction

Given a family S = {S1, . . . , Sm} of subsets of a ground set C = {c1, . . . , cn}
(we assume that ∪Si∈SSi = C), a set-cover of C is a sub-family S ′ ⊆ S such
that ∪Si∈S′Si = C; min set cover is the problem of determining a minimum-
size set-cover of C. min weighted set cover consists of considering that sets
of S are weighted by positive weights; the objective becomes then to determine
a minimum total-weight cover of C.

Given I = (S, C) and a cover Ŝ, the sub-instance Î of I induced by Ŝ is
the instance (Ŝ, C). For simplicity, we identify in what follows a feasible (resp.,
optimal) cover S ′ (resp., S∗) by the set of indices N ′ (resp., N∗) of the sets of
the cover, i.e., S′ = {Si : i ∈ N ′} (resp., S∗ = {Si : i ∈ N∗}).

For an instance (S, C) of min set cover, its characteristic graph B =
(L, R; E) is a bipartite graph B with color-classes L = {1, . . . , m}, corresponding
to the members of the family S and R = {c1, . . . , cn}, corresponding to the
elements of the ground set C; the edge-set E of B is defined as E = {(i, cj) :
cj ∈ Si}.

A cover S ′ of C is said to be minimal (or minimal for the inclusion) if removal
of any set S ∈ S ′ results in a family that is not anymore a cover for C.

Consider an instance (S, C) of min set cover and a minimal set-cover S ′

for it. Then, for any Si ∈ S ′, there exists cj ∈ C such that Si is the only
set in S ′ covering cj . Such a cj will be called non-redundant with respect to
Si ∈ S ′; furthermore, Si itself will be called non-redundant for S ′. With respect
to the characteristic bipartite graph B′ corresponding to the sub-instance I ′ of I
induced by S ′ (it is the subgraph B′ of B induced by L′ ∪ R where L = N ′),
for any i ∈ L′, there exists a c ∈ R such that d(c) = 1, where, for a vertex v of

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 62–71, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Greedy Differential Approximations for Min Set Cover 63

a graph G, d(v) denotes the degree of v. In particular, there exists at least |N ′|
non-redundant elements, one for each set. For simplicity, we will consider only
one non-redundant element with respect to Si ∈ S ′. Moreover, we assume that
this element is ci for the set i ∈ N ′. Thus, the set of non-redundant elements
with respect to S ′ considered here is C1 = {ci, i ∈ N ′}.

In this paper we study differential approximability for min set cover in
both unweighted and weighted versions. Differential approximability is analyzed
using the so-called differential approximation ratio defined, for an instance I of
an NPO problem Π (an optimization problem is in NPO if its decision version
is in NP) and an approximation algorithm A computing a solution S for Π in I,
as δA(I) = |ω(I)−mA(I, S)|/|ω(I)− opt(I)| where ω(I) is the value of the worst
Π-solution for I, mA(I, S) is the value of S and opt(I) is the value of an optimal
Π-solution for I. For an instance I = (S, C) of min set cover, ω(I) = m,
the size of the family S. Obviously, this is the maximum-size cover of I. Finally,
standard approximability is analyzed using the standard approximation ratio
defined as mA(I, S)/opt(I).

Surprisingly enough, differential approximation, although introduced in [1]
since 1977, has not been systematically used until the 90’s ([2, 3] are, to our
knowledge, the most notable uses of it) when a formal framework for it and a
more systematic use started to be drawn ([4]). In general, no apparent links ex-
ist between standard and differential approximations in the case of minimization
problems, in the sense that there is no evident transfer of a positive, or negative,
result from one paradigm to the other. Hence a “good” differential approxi-
mation result does not signify anything for the behavior of the approximation
algorithm studied when dealing with the standard framework and vice-versa. As
already mentioned, the differential approximation ratio measures the quality of
the computed feasible solution according to both optimal value and the value
of a worst feasible solution. The motivation for this measure is to look for the
placement of the computed feasible solution in the interval between an optimal
solution and a worst-case one. Even if differential approximation ratio is not as
popular as the standard one, it is interesting enough to be investigated for some
fundamental problems as min set cover, in order to observe how they behave
under several approximation criteria. Such joint investigations can significantly
contribute to a deeper apprehension of the approximation mechanisms for the
problems dealt. A further motivation for the study of differential approximation
is the stability of the differential approximation ratio under affine transforma-
tions of the objective function. This stability often serves in order to derive
differential approximation results for minimization (resp., maximization) prob-
lems by analyzing approximability of their maximization (resp., minimization)
equivalents under affine transformations. We will apply such transformation in
Section 4.

We study in this paper the performance of two approximation algorithms.
The first one is the classical greedy algorithm studied, for the unweighted case
and for the standard approximation ratio, in [5, 6] and, more recently, in [7].
For this algorithm, we provide a differential approximation ratio bounded below

64 C. Bazgan et al.

by 1.365/Δ when Δ = maxSi∈S{|Si|} is sufficiently large. We next deal with min
weighted set cover and analyze the differential approximation performance
of a simple greedy algorithm that starts from the whole S considering it as
solution for min weighted set cover and then it reduces it by removing the
heaviest of the remaining sets of S per time until the cover becomes minimal.
We show that this algorithm achieves differential approximation ratio 1/Δ.

Differential approximability for both min set cover and min weighted
set cover have already been studied in [8] and discussed in [9]. The differential
approximation ratios provided there are 1/Δ, for the former, and 1/(Δ + 1),
for the latter. Our current work improves (quite significantly for the unweighted
case), these old results. Note also that an approximation algorithm for min set
cover has been analyzed also in [4] under the assumption m � n, the size of the
ground set C. It has been shown that, under this assumption, min set cover is
approximable within differential approximation ratio 1/2. More recently, in [9],
under the same assumption, min set cover has been proved approximable
within differential approximation ratio 289/360.

It is proved in [4] that if P �= NP, then inapproximability bounds for standard
(and differential) approximation for max independent set hold as differential
inapproximability bounds for min set cover. Consequently, unless P = NP,
min set cover is not differentially approximable within O(nε−(1/2)), for any
ε > 0. This result implies that approximation ratios of the same type as in
standard approximation (for example, O(1/ lnΔ), or O(1/ log n)) are extremely
unlikely for min set cover in differential approximation. Consequently, differ-
ential approximation results for min set cover cannot be trivially achieved by
simply transposing the existing standard approximation results to the differen-
tial framework. This is a further motivation of our work.

In what follows, we deal with non-trivial instances of (unweighted) min set
cover. An instance I is non-trivial for unweighted min set cover if the two
following conditions hold simultaneously: (i) no set Si ∈ S is a proper subset of
a set Sj ∈ S, and (ii) no element in C is contained in I by only one subset of S
(i.e., there is no non-redundant set for S).

2 The Natural Greedy Algorithm for Min Set Cover

Let us first note that a lower bound of 1/Δ can be easily proved for the differential
ratio of any algorithm computing a minimal set cover. We analyze in this section
the differential approximation performance of the following very classical greedy
algorithm for min set cover, called SCGREEDY in the sequel:

1. compute Si ∈ argmaxS∈S{|S|}; set N ′′ = N ′′ ∪ {i} (N ′′ is initialized to ∅);
2. update I setting: S = S \{Si}, C = C \Si and, for any Sj ∈ S, Sj = Sj \Si;
3. repeat Steps 1 to 2 until C = ∅;
4. range N ′′ in the order sets have been chosen and assume N ′′ = {i1, . . . , ik};
5. Set N ′ = N ′′; for j = k downto 1: if N ′ \ {ij} is a cover then N ′ = N ′ \ {ij};
6. output N ′ the minimal cover computed in Step 5.

Greedy Differential Approximations for Min Set Cover 65

Theorem 1. For Δ sufficiently large, algorithm SCGREEDY achieves differential
approximation ratio 1.365/Δ.

Proof. Consider N ′′ and the sets S ′′ = {S′
i1

, S′
i1

. . . , S′
ik
}, computed in Step 4

with their residual cardinalities, i.e., as they have been chosen during Steps 1
and 2; remark that, so-considered, the set S ′′ forms a partition on C. On the
other hand, consider solution N ′ output by the algorithm SCGREEDY and remark
that family {S′

i : i ∈ N ′} does not necessarily cover C.

c1 c7 c5 c6 c3 c4 c2

1 2 3 4

Fig. 1. An example of application of Step 5 of SCGREEDY

As an example, assume some min set cover-instance (S, C) with C =
{c1, . . . , c7} and suppose that execution of Steps 1 to 4 has produced a cover
N ′′ = {1, 2, 3, 4} (given by the sets {S1, S2, S3, S4}). Figure 1 illustrates charac-
teristic graph B′, i.e., the subgraph of B = (L, R; E) induced by L′∪R where L′

and R correspond to the sets N ′′ and C respectively. It is easy to see that N ′′ is
not minimal and application of Step 5 of SCGREEDY drops the set S1 out of N ′′;
hence, N ′ = {2, 3, 4}. The residual parts of S2, S3 and S4 are S′

2 = {c2, c6},
S′

3 = {c3} and S′
4 = {c4}, respectively. Note that Step 5 of SCGREEDY is impor-

tant for the solution returned in Step 6, since solution N ′′ computed in Step 4
may be a worst solution (see the previous example) and then, δ(I,S ′) = 0.

Consider an optimal solution N∗ given by the sets Si, i ∈ N∗ and denote
by {S∗

i }, S∗
i ⊆ Si, i ∈ N∗, an arbitrary partition of C (if an element c is

covered by more than one sets Si, i ∈ N∗, then c is randomly assigned to one
of them). Let C ′

1 = {ci : i ∈ N ′ \ N∗} be a set of non-redundant elements
with respect to N ′; obviously, by construction |C ′

1| = |N ′ \ N∗|. Finally, set
N∗

1 = {j ∈ N∗ : ∃c ∈ C ′
1, c ∈ S∗

j }. We deduce N∗
1 ⊆ N∗ \N ′, since any element

c ∈ C ′
1 is non-redundant for N ′ (otherwise, there would exist at least a c ∈ C ′

1
covered twice: one time by a set in N ′ \N∗ and one time by a set in N ′ ∩N∗,
absurd by the construction of C ′

1). Finally, set N̄ = {1, . . . , m} \ (N ′ ∪ N∗).
Observe that, using the notations just introduced, we have:

δ (I,S ′) =
|N∗

1 |+ |N∗ \ (N ′ ∪N∗
1)|+

∣∣N̄ ∣∣
|N ′ \N∗|+

∣∣N̄ ∣∣ (1)

66 C. Bazgan et al.

Consider the bipartite graph B′′ = (L′′, R′′; E′′) with L′′ = N∗
1 ∪ (N ′ \ N∗),

R′′ = C ′
1 and (i, cj) ∈ E′′ iff i ∈ S∗

j or i = j. This graph is a partial graph of the
characteristic bipartite graph B′ induced by L′ = N∗

1 ∪ (N ′ \N∗) and R′ = C ′
1.

By construction, B′′ is not connected and, furthermore, any of its connected
components is of the form of Figure 2.

i j k S∗
l

ci cj ck

Fig. 2. A connected component of B′′

For i = 1, . . . , Δ, denote by xi the number of connected components of B′′

corresponding to sets S∗
l of cardinality i. Then, by construction of this sub-

instance, we have:

|N∗
1 | =

Δ∑
i=1

xi (2)

|N ′ \N∗| = |C ′
1| =

Δ∑
i=1

i · xi (3)

Consider z ∈ [1, Δ] such that |C ′
1| = i0|N∗

1 | where i0 = Δ/z. One can easily see
that i0 is the average cardinality of sets in N∗

1 (when we consider the sets S∗
i ,

i ∈ N∗
1 , that form, by construction, a partition on C ′

1). Indeed,

i0 =
1
|N∗

1 |
∑

i∈N∗
1

|S∗
i | =

Δ∑
i=1

i · xi

Δ∑
i=1

xi

(4)

We have immediately from (1), (2) and (3):

δ (I,S ′) � |N∗
1 |

|N ′ \N∗| =
|N∗

1 |
|C ′

1|
=

1
i0

=
z

Δ
(5)

Consider once more the component of Figure 2, suppose that set S∗
� has cardi-

nality i and denote it by S∗
� = {c�1 , . . . , c�i} with �1 < . . . < �i. By greedy rule

of SCGREEDY, we deduce that the sets S′
�1

, . . . , S′
�i

(recall that we only consider
the residual part of the set) have been chosen in this order (cf., Steps 4 and 5 of

Greedy Differential Approximations for Min Set Cover 67

SCGREEDY) and verify |S′
�p
| � i + 1− p for p = 1, . . . , i. Consequently, there exist

(i− 1)+ (i− 2)+ . . .+1 = i(i− 1)/2 elements of C not included in C ′
1. Iterating

this observation for any connected component of B′′ we can conclude that there
exists a set C2 ⊆ C, outside set C1, of size at least |C2| �

∑Δ
i=1 i(i− 1)xi/2. El-

ements of C2 are obviously covered, with respect to N∗, by sets either from N∗
1 ,

or from N∗ \ N∗
1 . Suppose that sets of N∗

1 of cardinality i (there exist xi such
sets), i = 1, . . . , Δ, cover a total of kixi elements of C2. Therefore, there exists a
subset C ′

2 ⊆ C2 of size at least: |C ′
2| �

∑Δ
i=1((i(i− 1)/2)− ki)xi. The elements

of C ′
2 are covered in N∗ by sets in N∗ \N∗

1 . In order that C ′
2 is covered, a family

N∗
2 ⊆ N∗ \N∗

1 of size

|N∗
2 | �

1
Δ
·

Δ∑
i=1

(
i(i− 1)

2
− ki

)
xi (6)

is needed. Dealing with N∗
2 , suppose that for a y ∈ [0, 1]: (i) (1 − y)|N∗

2 | sets
of N∗

2 belong to N∗ \N ′ (indeed, they belong to N∗ \ (N ′ ∪N∗
1)) and (ii) y|N∗

2 |
sets of N∗

2 belong to N∗ ∩N ′.
We study the two following cases: y � (Δ− 1)/Δ and y � (Δ− 1)/Δ.
The first case is equivalent to (1 − y) � 1/Δ and then, taking into account

that ki � Δ − i, we obtain: (1 − y)|N∗
2 | � |N∗

2 |/Δ �
∑Δ

i=1((i(i− 1)/(2Δ2)) +
(i/Δ)− 1)xi. Using (1), (2), (3) and (6), we deduce:

δ (I,S ′) � |N
∗
1 |+ |N∗

2 | /Δ
|N ′ \N∗| �

Δ∑
i=1

(
i(i−1)
2Δ2 + i

Δ

)
xi

Δ∑
i=1

i · xi

=
1
Δ

+

Δ∑
i=1

f(i)xi

Δ∑
i=1

i · xi

(7)

where f(x) = x(x− 1)/(2Δ2), with 1 � x � Δ. We will now show the following
inequality (see also (4)) that i0 = (

∑Δ
i=1 ixi)/(

∑Δ
i=1 xi)):

Δ∑
i=1

f(i) · xi

Δ∑
i=1

i · xi

� f(i0)
i0

(8)

Remark that (8) is equivalent to
∑Δ

i=1 f(i) · (xi/
∑Δ

i=1 xi) � f(i0). On the other
hand, since f is convex, we have by Jensen’s theorem

∑Δ
i=1 zif(i) � f(

∑Δ
i=1 izi),

where zi ∈ [0, 1],
∑Δ

i=1 zi = 1. Setting zi = xi/
∑Δ

i=1 xi, (8) follows.
Thus, since i0 = Δ/z and we study an asymptotic ratio in Δ, (7) becomes

δ (I,S ′) � 1
Δ

+
1

2Δ2

(
Δ

z
− 1

)
≈ 1

Δ
+

1
2Δz

(9)

Expression (9) is decreasing with z, while (5) is increasing with z. Equality of
both ratios is reached when 2z2 − 2z − 1 = 0, i.e., for z = (2 +

√
12)/4 ≈ 1.365.

68 C. Bazgan et al.

We now deal with case y � (Δ−1)/Δ. Sub-family N∗
2 ∩N ′ (of size y|N∗

2 |) is,
by hypothesis, common to both N ′ (the cover computed by SCGREEDY) and N∗.
Minimality of N ′ implies that, for any set i ∈ N∗

2 ∩ N ′, there exists at least
one element of C non-redundant with respect to Si. So, there exist at least
|C3| = |N∗

2 ∩N ′| elements of C outside C ′
1 and C2.

Some elements of C3 can be covered by sets in N∗
1 . In any case, for the sets

{j1, . . . , jxi
} of N∗

1 of cardinality i with respect to the partition S∗
� , there exist at

most (Δ− (i+ki))xi elements of C3 that can belong to them (so, these elements
are covered by the residual set Sjp

\ S∗
jp

for p = 1, . . . , xi). Thus, there exist at
least

|C ′
3| = |C3| −

Δ∑
i=1

(Δ− (i + ki))xi = y |N∗
2 | −

Δ∑
i=1

(Δ− (i + ki)) xi (10)

elements of C3 not covered by sets in N∗
1 . Since initial instance (S, C) is non-

trivial, elements of C ′
3 are also contained in sets N3 either from N∗ \ N∗

1 , or
from N̄ . So, the family N3 has size at least |C ′

3|/Δ. Moreover, using (6), (10)
and y � 1, we get:

|N3| �
y |N∗

2 |
Δ

−
Δ∑

i=1

(Δ− (i + ki))xi

Δ
� y

Δ∑
i=1

i(i− 1)
2Δ2 xi +

Δ∑
i=1

(
i

Δ
− 1)xi (11)

We so deduce: δ(I,S ′) � (|N∗
1 |+ |N3 \ N̄ |+ |N̄ |)/(|N ′ \N∗|+ |N̄ |), which, tak-

ing into account that |N̄ | � |N̄ ∩N3|, finally becomes:

δ (I,S ′) � |N∗
1 |+ |N3|

|N ′ \N∗|+ |N3|
(12)

Note, furthermore, that function (a + x)/(b + x) is increasing with x, for a � b
and x > −b. Therefore, using (2), (3), (11) and y � (Δ− 1)/Δ, (12) becomes:

δ (I,S ′) �

Δ∑
i=1

(
(Δ−1)·i(i−1)

2Δ3 + i
Δ

)
xi

Δ∑
i=1

(
i + (Δ−1)·i(i−1)

2Δ3 + i
Δ − 1

)
xi

(13)

Set now f(x) = (Δ− 1) · (x(x− 1)/2Δ3) + (x/Δ); (13) can now be expressed as:

δ (I,S ′) �

Δ∑
i=1

f(i)xi

Δ∑
i=1

(f(i) + i− 1) xi

(14)

With the same arguments, as for the convexity of f , we deduce from (14):

δ (I,S ′) � f (i0)
f (i0) + i0 − 1

=
(Δ−1)·i0(i0−1)

2Δ3 + i0
Δ

i0 + (Δ−1)·i0(i0−1)
Δ3 + i0

Δ − 1
(15)

Greedy Differential Approximations for Min Set Cover 69

Recall that we have fixed i0 = Δ/z. If one assumes that Δ is arbitrarily large,
one can simplify calculations by replacing i0 − 1 by i0. Then, (15) becomes:

δ (I,S ′) �
i20

2Δ2 + i0
Δ

i20
2Δ2 + i0

Δ + i0
�

1
2z2 + 1

z
1

2z2 + 1
z + Δ

z

≈ 1
2zΔ

+
1
Δ

(16)

Ratio given by (5) is increasing with z, while the one of (16) is decreasing with z.
Equality of both ratios is reached when 2z2 − 2z − 1 = 0, i.e., for z ≈ 1.365.

So, in any of the cases studied above, the differential approximation ratio
achieved by SCGREEDY is greater than, or equal to, 1.365/Δ and the proof of the
theorem is now complete. �

Proposition 1. There exist min set cover-instances where the differential
approximation ratio of SCGREEDY is 4/(Δ + 2) for any Δ � 3.

Proof. Assume a fixed t > 1, a ground set C = {cij : i = 1, . . . , t − 1, j =
2, . . . , t, j > i} and a system S = {S1, . . . , St}, where Si = {cji : j < i} ∪ {cij :
j > i}, for i = 1, . . . , t. Denote by It = (S, C) the instance of min set cover
defined on C and S.

Remark that the smallest cover for C includes at least t−1 sets of S. Indeed,
consider a family S ′ ⊆ S of size less than t − 1. Then, there exists i0 < j0
such that neither Si0 , nor Sj0 belong to S ′. In this case element ci0j0 ∈ C is
not covered by S ′. Note finally that, for It, the maximum size of the subsets
of S is Δ = t − 1. Indeed, for any i = 1, . . . , t, |{cji : j < i}| = i − 1 and
|{cij : j < i}| = t− i; so, |Si| = t− 1.

Fix an even Δ and build the following instance (S, C) for min set cover:

C =
{

aij , a
′
ij : i, j = 1, . . . ,

Δ

2
, j > i

}
∪

{
bij : i = 1, . . . ,

Δ + 2
2

, j = 1, . . . , Δ

}

S1
i = {aji : j < i} ∪ {aij : j > i} ∪

{
bji : j = 1, . . . ,

Δ + 2
2

}
, i = 1, . . . ,

Δ

2

S2
i =

{
a′

ij : j < i
}
∪

{
a′

ij : j > i
}

∪
{

bjk : j = 1, . . . ,
Δ + 2

2
, k = i +

Δ

2

}
, i = 1, . . . ,

Δ

2

Sj =
{

Sj
i : i = 1, . . . ,

Δ

2

}
, j = 1, 2

S3 =
{{
{bij : j = 1, . . . , Δ} , i = 1, . . . ,

Δ + 2
2

}
i = 1, . . . ,

Δ + 2
2

}

Set S = S1∪S2∪S3. Notice that, ∀Si ∈ S, |Si| = Δ. Hence, during its first itera-
tion, SCGREEDY can choose a set in S3. Such a choice does not reduce cardinalities
of the remaining sets in this sub-family; so, during its first (Δ + 2)/2 iterations,
SCGREEDY can exclusively choose all sets in S3. Remark that such choices en-
tail that the surviving instance is the union of two disjoint instances IΔ/2 (i.e.,
instances of type It, as the ones defined in the beginning of this section, with

70 C. Bazgan et al.

t = Δ/2), induced by the sub-systems (S1, {aij}) and (S2, {a′
ij}). According to

what has been discussed at the beginning of the section, any cover for such in-
stances uses at least (Δ/2)−1 sets. So, for a set-cover S ′ computed by SCGREEDY
(remark that S ′ is minimal), we finally have: m(Î ,S ′) � (3Δ/2) − 1. Further-
more, since S1 ∪ S2 is a cover for C: opt(Î) = Δ; finally, ω(Î) = (3Δ/2) + 1. In
all, δ(Î ,S ′) = 4/(Δ + 2).

For the case of odd Δ (that is omitted here), it can be proved that there
exist an instance of min set cover for which SGREEDY attains differential ratio
at least 4/(Δ + 1). �

3 Differential Approximation for Min Weighted Set
Cover

Consider an instance I = (S, C,w) of min weighted set cover, where w
denotes the vector of the weights on the subsets of S and the following algorithm,
denoted by WSC in what follows:

– order sets in S in decreasing weight-order (i.e., w1 � . . . � wm); let N =
{1, . . . , m} be the set of indices in the (so-ordered) S; set N ′ = N ;

– for i = 1 to m: if N ′ \ {i} covers C, then set N ′ = N ′ \ {i};
– output N ′.

Proposition 2. WSC achieves differential approximation ratio bounded below
by 1/Δ. This bound is asymptotically tight.

Proof. We use in what follows notations introduced in Section 2. Observe that
N \ N ′ = N̄ ∪ (N∗ \ N ′) and N \ N∗ = N̄ ∪ (N ′ \ N∗) where we recall that
N̄ = N \ (N∗ ∪ N ′). Denoting, for any i ∈ N , by wi the weight of Si, and, for
any subset X ⊆ N , by wX , the total weight of the sets with indices in X , i.e.,
the quantity

∑
i∈X wi, the differential approximation ratio of WSC becomes

δ (I, N ′) =
wN\N ′

wN\N∗
(17)

Let Cc = {cj : ∃i ∈ N ′∩N∗, cj ∈ Si} be the set of elements covered by N ′∩N∗

and let C̄c = C \ Cc be the complement of Cc with respect to C. It is easy to
see that both N ′ \ N∗ and N∗ \ N ′ cover C̄c. Obviously, C ′

1 ⊆ C̄c (recall that
C ′

1 = {ci : i ∈ N ′ \N∗} is a set of non-redundant elements with respect to sets
of N ′ \N∗ and that any element of C ′

1 is covered by sets in N∗ \N ′).
Consider the sub-instance of I induced by (N ′ \ N∗ ∪ N∗ \ N ′, C ′

1). Fix an
index i ∈ N∗ \N ′ and denote by S∗

i = {ci1 , . . . , cik
} the restriction of Si to C ′

1,
i.e., S∗

i = Si ∩ C ′
1. Assume that S∗

i �= ∅; as it will be understood just below if
this is not the case, then the approximation ratio of WSC will be even better.
Obviously, since sets i1, . . . , ik have been chosen by WSC (i.e., {i1, . . . , ik} ⊆ N ′),
wij

� wi and, k � Δ, we get:
∑k

j=1 wij
� Δwi. Summing it for all i ∈ N∗ \N ′,

we obtain wN ′\N∗ � ΔwN∗\N ′ and then, wN\N∗ � ΔwN∗\N . Expression (17)
suffices now to conclude the proof of the ratio. The proof of the tightness is
omitted here. �

Greedy Differential Approximations for Min Set Cover 71

4 Max Hypergraph Independent Set

An instance (S, C) of min set cover can also be seen as a hypergraph H
where C is the set of its vertices and S is the set of its hyper-edges. Then min
set cover consists of determining the smallest set of hyper-edges covering C.
The “dual” of this problem is the well-known min hitting set problem, where,
on (S, C) one wishes to determine the smallest subset of C hitting any set in S.
min hitting set and min set cover are approximate equivalent in both stan-
dard and differential paradigms (see, for example, [10]; the former is the same as
the latter modulo the inter-change of the roles of S and C). On the other hand
another well-known combinatorial problem is max hypergraph independent
set where given (S, C), one wishes to determine the largest subset C ′ of C such
that no Si ∈ S is a proper subset of C ′. It is easy to see that for max hyper-
graph independent set and min hitting set, the objective function of the
one is an affine transformation of the objective function of the other, since a
hitting set is the complement with respect to C of a hypergraph independent
set. Consequently, the differential approximation ratios of these two problems
coincide, and coincide also (as we have seen just above) with the differential ap-
proximation ratio of min set cover. Hence, the results of the previous sections
identically apply for max hypergraph independent set also.

References

1. Ausiello, G., D’Atri, A., Protasi, M.: On the structure of combinatorial prob-
lems and structure preserving reductions. In: Proc. ICALP’77. Lecture Notes in
Computer Science, Springer-Verlag (1977)

2. Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex
optimization problems. J. Comput. System Sci. 21 (1980) 136–153

3. Zemel, E.: Measuring the quality of approximate solutions to zero-one program-
ming problems. Math. Oper. Res. 6 (1981) 319–332

4. Demange, M., Paschos, V. Th.: On an approximation measure founded on the links
between optimization and polynomial approximation theory. Theoret. Comput.
Sci. 158 (1996) 117–141

5. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
System Sci. 9 (1974) 256–278

6. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math.
13 (1975) 383–390

7. Slav́ık, P.: A tight analysis of the greedy algorithm for set cover. In: Proc. STOC’96.
(1996) 435–441

8. Demange, M., Grisoni, P., Paschos, V. Th.: Differential approximation algorithms
for some combinatorial optimization problems. Theoret. Comput. Sci. 209 (1998)
107–122

9. Hassin, R., Khuller, S.: z-approximations. J. Algorithms 41 (2001) 429–442
10. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,

Protasi, M.: Complexity and approximation. Combinatorial optimization problems
and their approximability properties. Springer, Berlin (1999)

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 72 – 81, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Methodology of Visual Modeling Language Evaluation

Anna Bobkowska

Gda sk University of Technology,
Narutowicza 11/12, 80-952 Gda sk, Poland

annab@eti.pg.gda.pl

Abstract. In order to achieve more maturity in Visual Modeling Language
(VML) engineering, effective methodologies of VML evaluation are necessary.
This paper proposes a methodology for evaluating VML from a cognitive
perspective. It discusses methodological problems of applying psychological
results for VML evaluation. It then presents research on a CD-VML
methodology that is based on cognitive dimensions (CD). This research covers
analysis of the application of CDs in the context of VMLs, empirical studies of
UML with an original CD questionnaire, customization of CDs for VML
evaluation and empirical studies of use cases with a CD-VML-UC
questionnaire - a product of the CD-VML methodology for use case diagram.

1 Introduction

Models play an important role in the activities of software development, integration
and maintenance. As software systems and their models become increasingly
complex, numerous interrelated diagrams are used for documentation. Sometimes
a few interrelated representations of the same system are required and there is a need
of management of not only relationships between the diagrams in the model but also
many interrelated models. Characteristics of performing software engineering tasks,
such as the level of their difficulty, the time of modeling, the time of searching for
information on the diagrams, the number of mistakes and possibilities of automation
depend on Visual Modeling Language (VML), which is used for modeling. The
standard VML nowadays is Unified Modeling Language [14], but there are also many
domain-specific modeling languages in use.

VML engineering is an emerging discipline which aims to provide methods for
designing high quality VMLs. Important components of VML engineering are
methodologies for evaluating several VML characteristics. VML is a complex
phenomenon which integrates visual and linguistic features. Additionally, VMLs
might be used different contexts. Therefore many methods of evaluation should be
designed. We assume that a good methodology of VML evaluation should be:

• easy to use - not requiring knowledge of complex theories;
• flexible - allowing evaluation in different contexts of use, e.g. type of the system

under development or type of model application;
• effective - allowing discovery of all important issues within a perspective;
• efficient – carried out in a short time.

The idea of this research was to propose a tool for VML evaluation from a
cognitive perspective. It is believed that a cognitive fit of the technology to its users

 A Methodology of Visual Modeling Language Evaluation 73

can increase efficiency, decrease cost, improve software quality and allow for easier
learning, use and maintenance [11]. However, the use of cognitive and social sciences
in software engineering is not an easy task. There are many loosely related
psychological theories that answer only selected questions, and often they were
verified with limited scope. Psychological research has also its own methodological
problems, which result from the fact that none can really ‘touch’ entities inside the
human mind. Thus, there is a need for checking the usefulness of a particular theory
in the software engineering context, and usually also for its customization. Solid
empirical studies are then essential for verification. There have been attempts of such
research, but these have encountered several problems [6], e.g. mismatch between
software engineering and psychology in programming. Other problems are concerned
with different values in research (explanation vs. practical use) and the level of
required precision, which is much higher in software engineering.

Fig. 1. Schema of research methodology: research areas and their relationships

Fig. 1 presents a schema of research methodology. In the first step we defined

objectives for VML evaluation methodology. An analysis of application of cognitive
dimensions (CD)[1,2,8] in the VML context was then made and empirical study with
an original CD questionnaire was performed. These suggested a need for
customization, so in the next step we developed a CD-VML methodology and verified
it in another empirical study with a CD-VML-UC questionnaire - a product of the
CD-VML methodology for the use case model.

Section 2 describes cognitive dimensions and the analysis of application of CDs in
the VML context. Section 3 presents results of the empirical study of UML with an
original CD questionnaire. Section 4 presents customization of CDs for VMLs and the
resulting CD-VML methodology. Section 5 contains a description of the empirical
study of evaluating use cases with CD-VML-UC questionnaire, and section 6 presents
results of this evaluation. Section 7 summarizes the research and draws conclusions.

Cognitive
Dimensions 1. Objectives of

VML
evaluation

2. Analysis
of application

of the CDs

3. Empirical
Studies of

UML with CD
questionnaire

4. CD-VML
methodology:

Customization of CDs
for VMLs

5. Empirical Studies
with CD-VML-UC

questionnaire

74 A. Bobkowska

2 Analysis of Application of CDs for VML Evaluation

The quality of application of a theory or a method for a given purpose depends on the
quality of the theory or method and appropriateness of using it for this purpose.
Theoretical analysis enables better their understanding, their characteristics and
background. With this analysis, the decision about application is based on more than
just belief that a method does what it promises to do. The analysis of the application of
CDs for VML evaluation included acquiring knowledge about CDs and CD framework,
its history of evolution, background theories, known applications of the CD
questionnaire and reasoning about possibilities of applying it in VML context.

Cognitive Dimensions [8] were designed for evaluation of usability of ‘notational
systems’. Notation is 'how users communicate with the system; notations can include
text, pictures, diagrams, tables, special symbols or various combinations of these.
Notational systems include many different ways of storing and using information –
books, different ways of using pencil and paper, libraries, software programs, and small
electronic devices.' The idea evolved to a CD framework which was a kind of research
tool about different aspects of CDs as well as discovering new ones [1]. The intention of
providing a Cognitive Dimensions Questionnaire [2] was to provide a discussion tool
that allows for the evaluation and improvement of notational systems in an effective and
cheap way. For example, the cognitive dimension 'error-proneness' is described as
follows 'the notation invites mistakes and the system gives little protection' and the CD
questionnaire provides for checking it the following questions: 'Do some kinds of
mistake seem particularly common or easy to make? Which ones? Do you often find
yourself making small slips that irritate you or make you feel stupid? What are some
examples?'

CD framework or CD questionnaire was applied e.g. for the evaluation of real-time
temporal logic TRIO, Z formalism, programming language C#, and spreadsheets
[4,10,12,13]. The authors reported general usefulness of the CDs for the evaluation.
However, some of them discovered some imperfections of CDs. They included:
working with cognitive dimensions requires hard mental operations; some cognitive
dimensions overlap; there are no satisfaction criteria for the cognitive dimensions; some
questions were difficult to interpret in a given context and customization for specific
applications was suggested. A software engineer while reading the term of 'dimensions’
might expect to cover essential parts of cognitive psychology with characteristics
known from our experience with three-dimensional space or algebra. However, the CD
framework is not complete, but still under development and the cognitive dimensions
are more alike some criteria of evaluation.

Whilst making a decision about the potential usefulness of CDs for VML evaluation
one should notice that the cognitive perspective is important for VML evaluation.
Additionally, VMLs with CASE tools can be classified as notational systems. The
problems may result from the fact that contemporary models and CASE tools are more
complex than notational systems and, in consequence, terminology might be
misleading, e.g. the concept of ‘notation element’ in CDs is different from the ‘model
element’ in UML - one ‘model element’ can be related to many ‘notation elements’.

 A Methodology of Visual Modeling Language Evaluation 75

3 Empirical Study of UML Evaluation with a CD Questionnaire

The goal of the study was to evaluate the application of a CD questionnaire as a
method of VML evaluation by trying it in practice. Seven persons took part in the
study: three academic staff (one of them with experience of VML design), one
software developer from industry and three students.

The participants were given the following tasks:

• to evaluate UML and the selected CASE tool by filling in the CD questionnaire;
• to reflect and comment on the results achieved with the method and to express

opinions about its usefulness for evaluation.

The CD questionnaire is nine pages long and participants filled it in about an hour.
Questionnaires were completed and analyzed against criteria of a good methodology.
The answers were not precise and had little practical value for improvement. Some
examples were written down rather than all elements carefully examined. The answers
were not always clear and quite often contained such expressions as 'it depends...', 'in
general...' or 'it is possible...'. The analysis of comments and opinions indicated that
participants were aware of these problems. They estimated the level of details in the
gathered data as medium or low. None of the responders discovered anything new. They
did not find the questionnaire very useful for UML evaluation. Only the VML designer
appreciated the value of having any methodology of evaluation. Final satisfaction of
using the CD questionnaire as a method of VML evaluation was medium or low. A
detailed description of this study can be found in [3].
 The main reported problems about the CD questionnaire as a methodology of VML
evaluation and lessons learned for further research included:

• The method should enable consideration of all VML elements separately. The
CD questionnaire contains questions which do not distinguish between notation
(UML) and a (CASE) tool which all participants needed to consider separately.
This deficiency did not allow the capture of contradictory or complementary
influence of several aspects of the 'notational system'.

• A higher level of precision is required. The CD questionnaire was considered too
general and imprecise. Responders could not answer some questions because
they were vague and responders did not know what they exactly meant.
Additionally some measures of success were suggested.

• Preparation of the participants is needed. The vocabulary of the questionnaire
should fit to the mental representations of their users. All responders had some
problems with understanding the meaning of some questions in the context of
visual modeling languages. They would like to know the theory beyond these
questions.

This stage of the research was concluded with the need of customization of the
CDs for VMLs to help eliminate the discovered problems.

4 Customization: CD-VML Methodology

The approach to customization of the original CD questionnaire for VML evaluation
is presented in Fig. 2. In the first stage, we redefined cognitive dimensions for VML

76 A. Bobkowska

evaluation and we generalized knowledge about contemporary VML in a definition of
VML. A model of mental representations was then made and all elements were
integrated into a CD-VML template.

Fig. 2. Approach to customization of the CD questionnaire for VML

The basic assumption underlying the redefinition of CDs was to focus on
mechanisms delivered by the language for creating models. Modeling, visual elements
and mechanisms, at this level of abstraction, were basic language elements as well as
methods for building more complex constructions. The list and names of the CDs
were intact, but their definitions were adapted to VML, e.g. new meaning of 'error-
proneness' is 'mechanisms which invite mistakes' and its motivation (for users who
don't know CDs in detail) is 'to find typical errors and their reasons in the VML.' The
definition of Visual Modeling Language assumes it is an internally integrated:

• set of model elements and modeling mechanisms used to relate model elements
and operate on them resulting in constructions (relationships, groupings, etc.);
together with constraints that describe possible relationships between them –
defined by ABSTRACT SYNTAX;

• set of designations (basic meanings) for the model elements and modeling
mechanisms and constructions defined in ABSTRACT SYNTAX together with
hints on how to produce meaning of the model – described by SEMANTICS;

• set of possible applications (contexts of use for language SEMANTICS) and their
conceptual models represented by goals and tasks – described by
PRAGMATICS;

• set of notation elements and visual mechanisms (e.g. link, co-location) related to
model elements and modeling mechanisms that allow for building diagrams and,
thus, visualizing the model – described by NOTATION.

It would not be possible to achieve the precision of the questions without
description of the basic concepts of the mental representations. They included:
concept, mental construction, conceptual model, perspective and mental activity. The
result of this integration was a universal CD-VML template, which shifted the CD
questionnaire from the general area of the notational systems to the area of VML.

Original CD
questionnaire

CD-VML
template

CD-VML-XX-YY
questionnaire

VML definition
(meta-meta-model)

Description of VML XX
(meta-model)

 and its context of use YY

 A Methodology of Visual Modeling Language Evaluation 77

In the second stage, questionnaires for several VMLs in their specific context of
use can be developed. Each CD-VML-XX-YY questionnaire can be generated on the
basis of the CD-VML template, description of VML - XX and its context of use - YY.
In order to facilitate focusing responders’ attention they contain tables with relevant
elements of concrete visual modeling language elements to be considered. The
resulting questionnaire should be an efficient tool for assessing all combinations of
the evaluation aspects and VML elements. In the case of the CD-VML-UC
questionnaire, part of the modeling language under evaluation XX were use cases
according to the UML standard (abbreviated as UC) and YY was its default context of
use for creating models, using them and changing them (thus, the last part was
omitted).
 The flexibility of the methodology is manifested by the observation, that the CD-
VML template can be customized for many VMLs for use in different contexts. The
criteria of effectiveness, efficiency and ease of use were also considered. The
experience with questionnaires applied in software engineering suggest that people
work in a hurry and need support of detailed questions that combine pieces of
information from different conceptual models. Otherwise, it is very likely that useful
information will not be discovered. The CD-VML-UC questionnaire had several
features which made it easy to use, effective and efficient:

• It grouped questions according to cognitive dimensions and provided their
descriptions and motivations;

• It reduced the number of open questions about VML elements and mechanisms
(in order to reduce time needed to remind model elements), and contained the
space for describing reasons, inserting comments, suggestions for improvements
and presenting examples with the possibility to comment on them;

• It used different colors assigned to concepts related to syntax, semantics,
pragmatics, notation and mental representations.

In order to give an example, we present questions from the section of the
questionnaire related to error-proneness. It starts with questions to find common
mistakes whilst modeling and using diagrams: 'Whilst modeling, what kinds of
mistakes are particularly common or easy to make? Which kinds of mistakes you
must be careful not to make? Whilst using diagrams, which misunderstandings are
very likely to happen?' Then, there is a table with listing of all model elements and
notation elements and space for problem descriptions. It is headed with the questions:
'Which model elements or constructions or notation element or visual mechanisms are
these mistakes concerned with? What are the problems?' Below this table there is a
space for explanations, examples, comments and suggestions for improvement of the
VML or suggestions for special features of the CASE tool.

5 Empirical Study with CD-VML-UC Questionnaire

The goal of this study was to verify the CD-VML methodology by trying out an
example: evaluation of use case diagrams with CD-VML-UC questionnaire in
practice. Use case diagram [14] is a popular and quite simple UML diagram, but some
controversies around its details still exist [5,7,9,15]. The participants of this study
were forty-five of the best students (out of about one hundred forty in total). The

78 A. Bobkowska

study took place at the end of the term, in which they had a lecture and practical on
Analysis and Design of Computer Systems. Thus, they had knowledge about software
development lifecycle and application of object-oriented methods in its early phases.
The only possible problem of having students as experimental participants was their
small experience – they modeled only one (but usually quite complex) system during
the practical. However their strength was that they could remember very well what
was easy to do whilst modeling, what were their problems and questions, what
mistakes they were making and which other mechanisms they would need to specify a
particular view of their system.

The participants were given the tasks like in the previous study:

• to evaluate use cases by filling in the CD-VML-UC questionnaire;
• to reflect and comment on the results achieved with the method and to express

opinions about its usefulness for evaluation.

The CD-VML-UC questionnaire was eighteen pages long and the study took about

four hours. Before they started filling the questionnaire in they were given a tutorial,
which aimed at delivering additional method-specific knowledge. The tutorial
included information about the approach and students’ role in the study, the theory of
VML, information about cognitive dimensions and structure of the questionnaire.
During the study they could use UML standard documentation to check things they
were not sure about.
 The results of the study are described in section 6. Here, we summarize conclusions
from this study. Students confirmed simplicity and usefulness of use cases, but they
also discovered a large number of problems, gave reasonable explanations to them
and quite often made suggestions for improvements. Their discoveries covered all the
problems reported in the related work. In comparison to the previous study (described
in section 3), in which no problems related to use cases were discovered, this is
a great improvement in the methodology. This brings more evidence to the
hypothesis, that more detailed questionnaires help in acquiring more detailed data.
The level of detail of the individual answers was satisfactory: problems usually were
described with details and examples and even simple diagrams for illustration of the
problem were added. In the section of comments they stated the following strengths
of the methodology: the precision of questions, large area of covered issues and ease
of use. Among the weaknesses they mentioned: too large length of the questionnaire
and redundancy in the sense of similar questions in different parts of the questionnaire
or at least similar answers to them. Most participants discovered something new about
different aspects of use cases or modeling. While describing the problems many
students had awareness that many aspects depend on the developers’ decisions and
size of the system. Usefulness of the method was evaluated as high and results were
considered as important for use case model improvement.

6 Reported Problems for Use Case Diagram

Most elements of the use case diagram were evaluated as easy to understand and use.
The lowest score had UseCaseInstance and ExtensionPoint. Students often considered
ExtensionPoint as unclear, useless, redundant with extend relationship and making

 A Methodology of Visual Modeling Language Evaluation 79

problems in modeling in the case of several extensions. The problems with
UseCaseInstance were concerned with lack of precision, lack of a notational symbol
and unclear purpose. For other elements reported by participants deficiencies can be
classified to the following groups: a 'stick man’ as actor’s notational element;
problems with appropriate level of abstraction of use cases; difficult decision of
choice between include, extend or generalize relationships; readability of the include
and extend stereotype labels; need to see business perspective; need of mechanisms of
use case decomposition and potential problems with generalizations. The
methodology at this point does not deliver rules necessary to judge which of them are
important. The purpose of this section is to present empirical data which were
achieved with this method. On the other hand, we are aware that other perspectives,
e.g. consistency with other diagrams, might provide other arguments.

A 'stick man’ as notational element of the actor is very intuitive when actor
represents human users of the system. It is not intuitive at all when it represents
another system, which cooperates with the system under development. Students
suggested other icons, e.g. computer icon for another system. The UML standard
gives such a possibility, but most CASE tools provide only default notation of a 'stick
man'.

The participants reported problems with appropriate level of abstraction of use
cases:

• Use cases, which are included or extend another use case are not strictly units of
functionality visible from the outside of the system;

• It is difficult to keep the same level of abstraction on the diagram – especially
using inclusions and extensions requires exceptions from this; when we assume
that criteria for decomposing into included and extending use cases are shared
functionality and conditional performance, it is still confusing with regards to
other functionality at the same level of detail;

• Roles of actors in interaction with a use case are not clear, for example when
there are two or more actors associated with the same use case, the diagram does
not show if all of them can initialize this use case or some of them only interact
with the system.

The confusions in deciding which of the modeling mechanisms to choose from

possible ‘include’, ‘extend’, and ‘generalization’ result from the fact that they
represent very similar concepts. In real systems there is not such a clear-cut
distinction about ‘always-sometimes’ and quite often there are situations in which
something that is usually included can be omitted. The difference may depend on the
actor when at least two of them are associated with a use case.

The problems with readability of the visual constructions with use of include and
extend stereotypes labels were motivated as follows:

• The stereotype labels take a lot of space, they are difficult to distinguish and it
takes more time to read them in comparison to possible presentations of them as
different kinds of arrows or lines;

• It is difficult to see proper associations in the complex diagrams, e.g. when there
are crossings of relationships or when there is a large distance between related
use cases or there are chains of relationships;

80 A. Bobkowska

• Direction of the ‘extend’ arrow is confusing – there is a lexical consistency, but
not a visual one, which is related to how people usually read the diagram.

Many students suggested other kinds of arrows or lines to depict them.
 The lacking aspects of ‘business perspective’ were order of performing use cases in
time; spatial or organizational relationships between actors; correlations with
organizational business activity; the roles of actors in use cases and relationships
between actors who are associated with separate use cases and at the same time their
interaction with the system is associated with the same goal.
 The concepts related to mechanisms of use case decomposition were: a possibility
to indicate levels of abstraction and navigate between them; a possibility to extend a
use case to a use case diagram and possibility to group use cases. Generalization of
both use cases and actors was considered as a concept that sometimes might be useful
and consistent with an object-oriented paradigm, but its use may cause more problems
than benefits. It is a difficult concept, it extends the time of reading the models and
will not be easy to understand for potential customers.
 These observations are consistent with those reported in related work which
suggest problems with use case relationships [5,7], included and extending use cases
[7], or limitations of use cases in modeling context of the system, relating systems
involved in the same business and specifying constraints between use case
occurrences [15].

7 Conclusions and Future Work

Evaluating a methodology of VML evaluation is a tricky task, because there are many
parameters of the study. An empirical approach, in which individuals perform some
activities and then reflect and comment on the results, seems to be the only way to
capture ideas with a practical value. However, the role of the theoretical analysis of
usefulness of a given theory as a basis for a method of VML evaluation should not be
dismissed. In this research, the main problems of overlapping, complexity and
precision were already discovered during the analysis of the CD framework.

This research delivered a CD-VML methodology for evaluating any contemporary
VML from a cognitive perspective. It satisfies the criteria of ease of use, effectiveness
and flexibility and only partially the criterion of efficiency. It is a result of the
integration of the VML definition with the cognitive dimensions. The VML definition
delivered a precise model of the VML and the CDs delivered a set of criteria related
to the cognitive aspects. A challenge for future work on evaluating VMLs from
a cognitive perspective is to focus on confirmation of positive features of the VMLs
and to find ways of estimating the significance of discovered problems.

Acknowledgements

A part of this research was performed at University of Kent, UK and was supported
by SegraVis Research Training Network. I would like to thank Stuart Kent for many
useful discussions about visual modeling languages and Thomas Green for replying to
my questions about cognitive dimensions. I am also grateful to participants of my
empirical studies for their nice attitude and the results they delivered.

 A Methodology of Visual Modeling Language Evaluation 81

References

1. Blackwell, A.F., Britton, C., Cox, A. Green, T.R.G., Gurr, C.A., Kadoda, G.F., Kutar, M.,
Loomes, M., Nehaniv, C.L., Petre, M., Roast, C., Roes, C., Wong, A. And Young, R.M.
Cognitive Dimensions of Notations: Design tools for cognitive technology. In M. Beynon,
C.L. Nehaniv, and K. Dautenhahn (Eds.) Cognitive Technology 2001 (LNAI 2117).
Springer-Verlag, (2001).pp. 325-341.

2. Blackwell, A.F., Green, T.R.G.: A Cognitive Dimensions questionnaire optimised for
users. In: Proceedings of the Twelth Annual Meeting of the Psychology of Programming
Interest (PPIG) Group. (2000) 137-152.

3. Bobkowska A.E.: Cognitive Dimensions Questionnaire Applied to Visual Modelling
Language Evaluation - a Case Study. In: Proceedings of the Fifteenth Annual Workshop of
the PPIG (2003)

4. Clarke, S.: Evaluating a new programming language. In G. Kadoda (Ed.) Proceedings of
the Thirteenth Annual Meeting of the PPIG. (2001) pp. 275-289.

5. Cox K.: Cognitive Dimensions of use cases: feedback from a student questionnaire. In:
Proceedings of the Twelth Annual Meeting of the PPIG (2000)

6. Detienne F.: Software Design – Cognitive Aspects, Springer-Verlag (2002)
7. Genova G., Llorens J., Quintana V.: Digging into Use Case Relationships. In: Proceedings

of <UML>2002, Lecture Notes on Computer Science 2460 (2002)
8. Green, T. R. G.: Cognitive dimensions of notations. In: People and Computers .

Cambridge University Press. Cambridge (1989) 443-460
9. Isoda S.: A Critique of UML's Definition of the Use-Case Class. In: Proceedings of

<UML>2003, Lecture Notes on Computer Science 2863 (2003)
10. Kutar, M., Britton, C. And Wilson, J.: Cognitive Dimensions: An experience report. In

A.F. Blackwell & E. Bilotta (Eds.) Proceedings of the Twelth Annual Meeting of the
Psychology of Programming Interest Group (2000) pp. 81-98.

11. Shneiderman B.: Software Psychology. Human Factors in Computer and Information
Systems. Winthrop Publishers Inc. (1980)

12. Triffitt, E., Khazaei, B.: A Study of Usability of Z Formalism Based on Cognitive
Dimensions. In J. Kuljis, L. Baldwin and R. Scoble (Eds), Proceedings of the Fourteenth
Annual Meeting of the PPIG (2002) pp. 15-28

13. Tukiainen, M.: Evaluation of the Cognitive Dimensions Questionnaire and Some Thoughts
about the Cognitive Dimensions of Spreadsheet Calculation. In G. Kadoda (Ed.)
Proceedings of the Thirteenth Annual Meeting of the PPIG. (2001) pp 291-301.

14. Unified Modeling Language v. 1.4 ., available at http://www.omg.org/uml/
15. Wegmann A., Genilloud G.: "The Role of ¨Roles¨ in Use Case Diagrams", Proceedings of

3rd International Conference on the Unified Modeling Language York, UK (2000).

Local Computations on Closed Unlabelled Edges:
The Election Problem and the Naming Problem

(Extended Abstract)

Jérémie Chalopin

LaBRI, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France
chalopin@labri.fr

1 Introduction

The different local computations mechanisms are very useful for delimiting the
borderline between positive and negative results in distributed computations.
Indeed, they enable to study the importance of the synchronization level and
to understand how important is the initial knowledge. A high level of synchro-
nization involved in one atomic computation step makes a model powerful but
reduces the degree of parallelism. Charron-Bost et al. [1] study the difference be-
tween synchronous and asynchronous message passing models. The model stud-
ied in this paper involves more synchronization than the message passing model:
an elementary computation step modifies the states of two neighbours in the
network, depending only on their current states. The information the processors
initially have can be global information about the network, such as the size, the
diameter or the topology of the network. The initial knowledge can also be local:
each node can initially know its own degree for example. Another example of
local knowledge is the existence of a port numbering: each processor locally gives
numbers to its incident edges and in this way, it can consistently distinguish its
neighbours. In Angluin’s model [2], it is assumed that a port numbering exists,
whereas it is not the case in our model. In fact, we obtain a model with a strictly
lower power of computation by relaxing the hypothesis on the existence of a port
numbering.

The Model. A network of processors will be represented as a simple connected
undirected graph. As usual the vertices represent processors and edges direct
communication links. The state of each processor is represented by the label
λ(v) of the corresponding vertex.

An elementary computation step will be represented by relabelling rules of
the form given schematically in Figure 1. If, in a graph G, there are two neigh-
bours labelled X and Y then applying this rule we replace X (resp. Y) by a new
label X ′ (resp. Y ′). The labels of all other graph vertices are irrelevant for such
a computation step and remain unchanged. The computations using uniquely
this type of relabelling rules are called in this paper local computations on closed
unlabelled edges. Thus an algorithm in our model is simply given by some (pos-
sibly infinite but always recursive) set of rules of the type presented in Figure 1.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 82–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Local Computations on Closed Unlabelled Edges 83

A run of the algorithm consists in applying the relabelling rules specified by
the algorithm until no rule is applicable, which terminates the execution. The
relabelling rules are applied asynchronously and in any order, which means that
given the initial labelling usually many different runs are possible.

X Y X ′ Y ′

Fig. 1. Graphical form of a rule for local computations on closed unlabelled edges

Election, Naming and Enumeration. The election problem is one of the
paradigms of the theory of distributed computing. It was first posed by LeLann
[3]. A distributed algorithm solves the election problem if it always terminates
and in the final configuration exactly one processor is marked as elected and
all the other processors are non-elected. Moreover, it is supposed that once a
processor becomes elected or non-elected then it remains in such a state until
the end of the algorithm. The naming problem is another important problem
in the theory of distributed computing. The aim of a naming algorithm is to
arrive at a final configuration where all processors have unique identities. The
enumeration problem is a variant of the naming problem whose aim is to give to
each node a unique number between 1 and the size of the graph. These problems
are important since they constitute basic initial steps of many other distributed
algorithms.

Related Works. Graphs where election is possible were already studied for dif-
ferent types of basic computation steps and particular types of network topology
(tree, grid, torus, ring with a known prime number of vertices, etc.), see [4].

Yamashita and Kameda [5] characterize the graphs for which there exists an
election algorithm in the message passing model and they study the importance
of the port numbering in [6].

Mazurkiewicz [7] considers an asynchronous computation model where in one
computation step, labels are modified on a subgraph consisting of a node and
its neighbours, according to certain rules depending on this subgraph only. His
characterization of the graphs where enumeration and election are possible can
be formulated using coverings [8]. In this model, the port numbering does not
give a more powerful model, since in each computation step, a node can always
distinguish its neighbours.

Chalopin and Métivier [9] consider three different asynchronous models that
are defined by the rules presented in Figure 2. Note that, contrary to the model
we examine in the present paper, all these models allow edge labelling. In fact,
allowing to label the edges is equivalent to the existence of a port numbering,
since in these models, it is always possible for a processor to consistently identify
its neighbours. Consequently, the first model studied in [9] is equivalent to the
model of Angluin [2]. It turns out that for all models of Figure 2 the election and
naming problems can be solved on a graph G if and only if G is not a covering
of any graph H not isomorphic to G, where H can have multiple edges but no

84 J. Chalopin

self-loop. Mazurkiewicz [10] has also studied the first model described in Figure 2
and he gives an equivalent characterization thanks to equivalence relations over
the vertices and the edges of the graph.

In the conclusion of [6], Yamashita and Kameda underline the importance of
the edge labelling and it is a natural question to wonder if the edge labelling,
or equivalently the existence of a port numbering, modify the power of the dif-
ferent models of Figure 2. Boldi et al. [11] consider a model where the network
is a directed multigraph. When a processor is activated, it changes its state de-
pending on its previous state and on the states of its ingoing neighbours. They
characterize the graphs that admits an election algorithm using fibrations, that
are generalization of coverings to directed graphs. Chalopin et al. [12] consider
a model where an elementary computation step modifies the state of one vertex
depending on its current state and the state of one of its neighbours; as in the
model studied here, the edges are not labelled. In this model, naming and elec-
tion are not equivalent and characterizations are given using submersions that
are locally surjective morphisms. The comparison between the characterization
given in [11], in [12] and in [9] shows that for the second and the third model of
Figure 2, it gives strictly more powerful models to allow the edges to be labelled.
In this paper, we complete the study of the importance of the port numbering:
the characterization we give of the graphs for which the naming and the elec-
tion problems can be solved for the model of Figure 1 is very different of the
characterization given in [9]. Moreover, we can remark that the three models
of Figure 2 that are equivalent when the edges can be labelled are no longer
equivalent when this hypothesis is relaxed.

Model 1: X ZY X ′ Z′Y ′

Model 2: X ZY X ′ ZY ′

Model 3:
X

Xd X1

X2

X3

Yd

Y1

Y2

Y3 X ′

Xd X1

X2

X3

Y ′
d

Y ′
1

Y ′
2

Y ′
3

Fig. 2. Elementary relabelling steps for the models studied in [9]

Main Results. We introduce in Section 2 the notion of pseudo-covering, that
is a generalization of coverings. We prove in Section 3 that naming and election
can be solved on a graph G if and only if G is minimal for the pseudo-covering
relation (Theorem 1).

The problems are solved constructively: we encode an enumeration algorithm
with explicit termination by local computations on closed unlabelled edges that
work correctly for all graphs where these problems are solvable. This algorithm
uses some ideas from Mazurkiewicz’algorithm [7]. However, in the models consid-
ered in [11, 9, 7, 10, 6], a node can consistently distinguish its neighbours whereas
it is impossible in the model studied here. Each execution of our algorithm on a
graph G computes a labelling that induces a graph H such that G is a pseudo-
covering of H. Consequently, there exists an integer k such that each label of the

Local Computations on Closed Unlabelled Edges 85

final labelling of G appears exactly k times in the graph; it is not the case for the
model studied in [12]. In our solution, stamps are associated to synchronizations
between neighbours. These associated stamps solve the problem, but they intro-
duce a non-trivial difficulty in the proof of the termination of the algorithm: we
must prove that stamps are bounded.

Imposed space limitations do not allow to present all the proofs in the paper.

2 Preliminaries

Graphs. The notations used here are essentially standard [13]. We consider
finite, undirected, connected graphs G = (V (G), E(G)) with vertices V (G) and
edges E(G) without multiple edges or self-loop. Two vertices u and v are said
to be adjacent or neighbours if {u, v} is an edge of G and NG(v) will stand for
the set of neighbours of v. An edge e is incident to a vertex v if v ∈ e and IG(v)
will stand for the set of all the edges of G incident to v.

A homomorphism between graphs G and H is a mapping γ : V (G)→ V (H)
such that if {u, v} ∈ E(G) then {γ(u), γ(v)} ∈ E(H). We say that γ is an
isomorphism if γ is bijective and γ−1 is a homomorphism.

A graph H is a subgraph of G, noted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆
E(G). A subgraph H of G is called a partial graph of G if G and H have the
same set of vertices.

A matching F of a graph G is a subset of E(G) such that for every e, e′ ∈ F ,
e∩ e′ = ∅: F is a set of disjoint edges of G. A matching F of G is perfect if every
vertex v ∈ V (G) is the endvertex of exactly one edge e ∈ F .

Throughout the paper we will consider graphs where vertices are labelled
with labels from a recursive label set L. A graph labelled over L is a couple
G = (G,λ), where G is the underlying non labelled graph and λ : V (G)→ L is
the (vertex) labelling function. Let H be a subgraph of G and λH the restriction
of the labelling λ : V (G)→ L to V (H). Then the labelled graph H = (H, λH) is
called a subgraph of G = (G,λ); we note this fact by H ⊆ G. A homomorphism
of labelled graphs is just a homomorphism that preserves the labelling.

For any set S, |S| denotes the cardinality of S. For any integer q, we denote
by [1, q] the set of integers {1, 2, . . . , q}.

Coverings and Pseudo-Coverings. A graph G is a covering of a graph H via
γ if γ is a surjective homomorphism from G onto H such that for every vertex v
of V (G) the restriction of γ to IG(v) is a bijection onto IH(γ(v)). The covering
is proper if G and H are not isomorphic. A graph G is called covering-minimal
if every covering from G to some H is a bijection.

A graph G is a pseudo-covering of H via a morphism ϕ modulo a graph G′

if G′ is a partial graph of G that is a covering of H via the restriction ϕ|G′ of
ϕ to G′. The pseudo-covering is proper if G and H are not isomorphic. A graph
G is said pseudo-covering-minimal if there does not exist a graph H such that
G is a proper pseudo-covering of H. An example of pseudo-covering is given in
Figure 3. Naturally, coverings and pseudo-coverings of labelled graphs are just

86 J. Chalopin

coverings and pseudo-coverings of underlying graphs such that the associated
morphisms preserve the labelling.

If G is a pseudo-covering of a graph H via ϕ modulo G′, then for every
edge f = {w1, w2} ∈ E(H), ϕ−1

|G′(f) is a perfect matching of ϕ−1({w1, w2}).
Consequently, there exists an integer q such that for every vertex v ∈ V (H),
|ϕ−1(v)| = q.

1 2

3

12

3

G

1 2

3

12

3

G′

1 2

3

H

partial graph

ϕ ϕ|G′

Fig. 3. The graph G is a pseudo-covering of H via the mapping ϕ modulo G′ where
ϕ maps each vertex of G labelled i to the unique vertex of H with the same label i.
This pseudo-covering is proper and the graph H is pseudo-covering-minimal

Local Computations on Closed Unlabelled Edges. For any set R of edge
local relabelling rules of the type described in Figure 1 we shall write G R G′ if
G′ can be obtained from G by applying a rule ofR on some edge of G. Obviously,
G and G′ have the same underlying graph G, only the labelling changes for the
endvertices of exactly one (active) edge. Thus, slightly abusing the notation, R
will stand both for a set of rules and the induced relabelling relation over labelled
graphs. The reflexive transitive closure of such a relabelling relation is noted R∗.
The relation R is called noetherian on a graph G if there is no infinite relabelling
sequence G0 R G1 R . . . , with G0 = G. The relation R is noetherian on a set
of graphs if it is noetherian on each graph of the set. Finally, the relation R is
called noetherian if it is noetherian on each graph. Clearly noetherian relations
code always terminating algorithms.

The following lemma is a counterpart of the lifting lemma of Angluin [2]
adapted to pseudo-coverings; it exhibits a strong link between pseudo-coverings
and local computations on closed unlabelled edges. An immediate corollary is
that there does not exist any algorithm using local computations on closed unla-
belled edges that solves the election problem or the naming problem on a graph
G that is not pseudo-covering-minimal.

Lemma 1 (Lifting Lemma). Let R be a relabelling relation encoding an al-
gorithm using local computations on closed unlabelled edges and let G0 be a
pseudo-covering of H0. If H0 R∗ H1 then there exists G1 such that G0 R∗ G1
and G1 is a pseudo-covering of H1.

Local Computations on Closed Unlabelled Edges 87

3 An Enumeration Algorithm

In this section, we describe a Mazurkiewicz-like algorithm M using local com-
putations on closed unlabelled edges that solves the enumeration problem on a
pseudo-covering-minimal graph G.

Each vertex v attempts to get its own number between 1 and |V (G)|. A ver-
tex chooses a number and exchanges its number with its neighbours. If during a
computation step, two neighbours exchange their numbers, a stamp o is given to
the operation such that two operations involving the same vertex have different
stamps. Each node broadcasts its number, its label and its local view (the num-
bers of its neighbours and the stamps of the operations of exchange associated
to each neighbour) all over the network. If a vertex u discovers the existence of
another vertex v with the same number, then it compares its local view with
the local view of v. If the label of u or the local view of u is “weaker”, then
u chooses another number and broadcasts it again with its local view. At the
end of the computation, every vertex will have a unique number if the graph is
pseudo-covering-minimal.

The main difference with Mazurkiewicz’algorithm is the existence of the
stamps o. The algorithm we will describe below computes a graph H such that
G is a pseudo-covering of H. To define a pseudo-covering, we need to define a
morphism and a subset of E(G). As in Mazurkiewicz’algorithm, the numbers of
the nodes will be used to define the morphism ϕ whereas the stamps o will be
used to select the edges of G.

Labels. We consider a labelled graph G = (G,λ). For each vertex v ∈ V (G), the
label of v is the pair (λ(v), c(v)) where λ(v) is the initial label of v whereas c(v)
is a triple (n(v), N(v),M(v)) representing the following information obtained
during the computation:

– n(v) ∈ N is the number of the vertex v computed by the algorithm;
– N(v) ∈ N is the local view of v. If the node v has a neighbour v′, some

relabelling rules will allow v and v′ to add n(v′) in N(v) and n(v) in N(v′).
Each time this operation is done between two neighbours a stamp o is given
to the operation and (n(v′), o) is added to N(v) (resp. (n(v), o) is added to
N(v′)). Consequently, N(v) is a finite set of pairs (n, o);

– M(v) ⊆ N × L ×N is the mailbox of v and contains the whole information
received by v at any step of the computation, i.e., the numbers, the labels
and the local views of the nodes of the network.

The fundamental property of the algorithm is based on a total order on local
views, as defined in [7], such that the local view of any vertex cannot decrease
during the computation. Consider a vertex v such that the local view N(v) ∈ N
is the set {(n1, o1), (n2, o2), . . . , (nd, od)}, we assume that n1 > n2 > ... >
nd and we say that the d-tuple ((n1, o1), (n2, o2), . . . , (nd, od)) is the ordered
representation of N(v). We define a total order ≺ on such ordered tuples using
the alphabetical order; it induces naturally a total order on N . We assume that
the set of labels L is totally ordered by <L and we extend ≺ on L×N .

88 J. Chalopin

The Relabeling Rules. We now describe the relabelling rules of the algorithm;
the first rule M0 is a special rule that extends the initial label λ(v) of each
vertex to (λ(v), (0, ∅, ∅)). The rules M1 and M2 are very close to the rules of
Mazurkiewicz’s algorithm.

The first rule enables two neighbours v and v′ having different mailboxes to
share the information they have about the labels present in the graphs.

M1 :
(l1, (n1, N1,M1)) (l2, (n2, N2,M2)) (l1, (n1, N1,M

′)) (l2, (n2, N2,M
′))

If M1 �= M2 then M ′ := M1 ∪M2.

The second rule enables a vertex v to change its number if n(v) = 0 or if
there exists a vertex v′ such that n(v) = n(v′) and v has a weaker label or a
weaker local view than v′.

M2 :
(l, (n,N,M)) (l, (k,N,M ′))

If n = 0 or ∃(n, l′, N ′) ∈M such that (l, N) ≺ (l′, N ′)
then k := 1 + max{n′ | ∃(n′, l′, N ′) ∈M} and M ′ := M ∪ {(k, l,N)}.

The third rule enables a node having a neighbour with exactly the same label
to change its number. If this rule is applied, the number of each node is inserted
in the local view of the other with a stamp o associated to the operation that is
different of the other stamps associated to operations involving one of the two
nodes. Moreover, when the number n(v′) of a neighbour v′ of v is inserted in
N(v), all the elements (m, o) belonging to N(v) such that m ≤ n(v′) are deleted
from the local view. The rationale behind this deletion step is explained in the
next ruleM4 below.

M3 :
(l, (n,N,M)) (l, (n,N,M)) (l, (k,N1,M

′)) (l, (n,N2,M
′))

If n > 0 and ∀(n, l′, N ′) ∈M, (l′, N ′) � (l, N)
then k := 1 + max{n′ | ∃(n′, l′, N ′) ∈M};

o := 1 + max{o′ | ∃(n′, o′) ∈ N};
N1 := N \ {(n′, o′) ∈ N | n′ ≤ n} ∪ {(n, o)};
N2 := {(k, o)} and M ′ := M ∪ {(k, l,N1), (n, l,N2)}.

The fourth rule enables two neighbours v and v′ to exchange their numbers
if an update is needed, i.e., if there does not exist o such that (n2, o) ∈ N1 and
(n1, o) ∈ N2. As for the precedent rule, if the number n(v′) of a neighbour v′

of v is inserted in N(v), all the elements (m, o) belonging to N(v) such that
m ≤ n(v′) are deleted.

The role of the stamp o associated to the operation is to ensure that at the
end of the computation, if the local view of a vertex v0 contains (n, o), it means
that it has a neighbour v′

0 such that n(v′
0) = n, (n(v0), o) ∈ N(v′

0) and such that

Local Computations on Closed Unlabelled Edges 89

the ruleM3 orM4 was applied to these two vertices; an interesting consequence
is that in the final labelling, |{v | n(v) = n(v0)}| = |{v | n(v) = n(v′

0)}|.

M4 :
(l1, (n1, N1,M)) (l2, (n2, N2,M)) (l1, (n1, N

′
1,M

′)) (l2, (n2, N
′
2,M

′))

If n1, n2 > 0, n1 �= n2,
∀(n1, l

′
1, N

′
1) ∈M, (l′1, N

′
1) � (l1, N1),

∀(n2, l
′
2, N

′
2) ∈M, (l′2, N

′
2) � (l2, N2),

and �o | (n2, o) ∈ N1 and (n1, o) ∈ N2
then o := 1 + max{o′ | ∃(n′, o′) ∈ N1 ∪N2};

N ′
1 := N1 \ {(n′, o′) ∈ N1 | n′ ≤ n2} ∪ {(n2, o)};

N ′
2 := N2 \ {(n′, o′) ∈ N2 | n′ ≤ n1} ∪ {(n1, o)};

M ′ := M ∪ {(n1, l1, N
′
1), (n2, l2, N

′
2)}.

The intuitive justification for the deletion of all the (m, o) is the following.
If there is a synchronization between two neighbours v and v′, then they should
agree on an integer o0 and add (n(v), o0) to N(v′) and (n(v′), o0) to N(v). But,
it is possible that v synchronized with v′ in the past and in the meantime v′ has
changed its identity number or has synchronized with another vertex w such that
n(w) = n(v). In this case, to remain in a consistent state, the vertex v should
modify its local view to remove the old identity number of v′ and the o associated
to this precedent synchronization. The trouble is that v has no means to know
which of the pairs (m, o) belonging to its view N(v) should be deleted. However,
since our algorithm assures the monotonicity of subsequent identity numbers of
each vertex and monotonicity of subsequent o involving the node v′, we know
that the couple (m, o) to remove is such that (m, o) <Lex (n(v′), o0) Therefore,
by deleting all such (m, o) from the local view N(v), we are sure to delete all
invalid information. Of course, in this way we risk to delete also the legitimate
current informations about other neighbours of v from its view N(v). However,
v can recover this information just by (re)synchronizing with all such neighbours.

Properties. In the following, we consider an execution of the algorithm on a
graph G. We will denote by (λ(v), (ni(v), Ni(v), Mi(v)) the label of the vertex
v after the ith computation step.

We can see that the label of each node can only “increase” during the com-
putation. Indeed, for each step i, for each vertex v, ni(v) ≤ ni+1(v), Ni(v) �
Ni+1(v) and Mi(v) ⊆Mi+1(v). Moreover, if a vertex v knows the existence of a
node with the number m (i.e., ∃(m, l, N) ∈Mi(v)), then for each m′ ≤ m, there
exists a node w such that ni(w) = m′. An immediate corollary of this property
is that after each computation step the numbers of the nodes is a set [1, k] with
k ≤ |V (G)|.

We will now prove that each execution of M on a graph G is finite. In fact,
we just have to prove that the values of n(v), N(v) and M(v) are bounded for
each vertex v . Since we already know that n(v) ≤ |V (G)|, we just have to prove
that the stamps o are also bounded. It will imply that N(v) and M(v) can only

90 J. Chalopin

take a finite number of values. From the properties described above, there exists
a step i0 such that ∀i ≥ i0,∀v ∈ V (G), ni(v) = ni0(v) and therefore the rules
M2 and M3 cannot be applied after the step i0. Consider two neighbours v
and w such that ni0(v) > ni0(w) and two steps j2 > j1 > i0 where the rule
M4 is applied to the edge {v, w}. Then, there must exist an edge {v′, w′} with
(ni0(v), ni0(w)) <Lex (ni0(v

′), ni0(w
′)) and a step j ∈ [j1, j2] where the rule

M4 is applied to {v′, w′}. Consequently, the rule M4 can only be applied a
finite number of time over each edge and we can ensure the termination of the
algorithm.

For each execution of the algorithm over G, a graph H is associated to
the final labelling with V (H) = {n(v) | v ∈ V (G)} such that G is a pseudo-
covering of H. If G is pseudo-covering-minimal, then G � H. Consequently,
for every run of the enumeration algorithm, the graph associated to the final
labelling is isomorphic to G and therefore the set of numbers the vertices have
is exactly [1, |V (G)|]. Moreover, once a vertex gets the number |V (G)|, it knows
that all the vertices have a different number that will not change any more
and therefore it can detect the termination. We can therefore transform the
enumeration algorithm into an election algorithm, by choosing to elect the node
that gets the number |V (G)|. From these results and Lemma 1, we have the
following theorem.

Theorem 1. For every graph G, it is equivalent to solve the following problems
on G with local computations on closed unlabelled edges: naming, naming with
explicit termination and election. These problems can be solved on G if and only
if G is a pseudo-covering-minimal graph.

4 Comparison with Other Models

It is easy to see that each algorithm encoded by local computations on closed
unlabelled edges can be translated in the models of Mazurkiewicz [7], Angluin
[2] and Chalopin and Métivier [9]. And the algorithms encoded in the model of
[12] can be encoded by local computations on closed unlabelled edges.

In the models of Mazurkiewicz [7], Angluin [2], Chalopin and Métivier [9],
Yamashita and Kameda [5] and Boldi et al. [11], the election and the naming
problems can be solved in the graph G1 of Figure 4. Nevertheless, this graph
G1 is a pseudo-covering of the graph H1. Therefore, it is not possible to solve
the election problem by using local computations on closed unlabelled edges.

If we consider the pseudo-covering-minimal graphs G2 and G3 of Figure 4,
we can solve the election problem over these graphs with local computations on
closed unlabelled edges. But the election problem cannot be solved over G3 in
the models studied in [11] and in [12]. Moreover there does not exist any election
algorithm for the graph G2 in the model studied in [5].

Consequently, our model is strictly less powerful than the models studied by
Mazurkiewicz [7], by Angluin [2] and by Chalopin and Métivier [9], but strictly
more powerful than the model studied by Chalopin et al. [12]. And the power

Local Computations on Closed Unlabelled Edges 91

2

1

3 1

3

2
4

5

6

7

6

5

7

4

G1
1

3

2

4

5

6

7

H1

G2 G3

Fig. 4. Different graphs that show the differences between the different models

of computation of our model is not comparable to the power of the models of
Yamashita and Kameda [5, 6] and Boldi et al. [11].

References

1. Charron-Bost, B., Mattern, F., Tel, G.: Synchronous, asynchronous and causally
ordered communication. Distributed Computing 9 (1996) 173–191

2. Angluin, D.: Local and global properties in networks of processors. In: Proc. of
the 12th Symposium on Theory of Computing. (1980) 82–93

3. LeLann, G.: Distributed systems: Towards a formal approach. In Gilchrist, B.,
ed.: Information processing’77, North-Holland (1977) 155–160

4. Tel, G.: Introduction to distributed algorithms. Cambridge University Press (2000)
5. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i - charac-

terizing the solvable cases. IEEE Transactions on parallel and distributed systems
7 (1996) 69–89

6. Yamashita, M., Kameda, T.: Leader election problem on networks in which pro-
cessor identity numbers are not distinct. IEEE Transactions on parallel and dis-
tributed systems 10 (1999) 878–887

7. Mazurkiewicz, A.: Distributed enumeration. Inf. Processing Letters 61 (1997)
233–239

8. Godard, E., Métivier, Y., Muscholl, A.: Characterization of classes of graphs recog-
nizable by local computations. Theory of Computing Systems 37 (2004) 249–293

9. Chalopin, J., Métivier, Y.: Election and local computations on edges (extended
abstract). In: Proc. of FOSSACS’04. Number 2987 in LNCS (2004) 90–104

10. Mazurkiewicz, A.: Bilateral ranking negotiations. Fundamenta Informaticae 60
(2004) 1–16

11. Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J., Vigna, S.: Sym-
metry breaking in anonymous networks: Characterizations. In: Proc. 4th Israeli
Symposium on Theory of Computing and Systems, IEEE Press (1996) 16–26

12. Chalopin, J., Métivier, Y., Zielonka, W.: Election, naming and cellular edge local
computations (extended abstract). In: Proc. of ICGT’04. Number 3256 in LNCS
(2004) 242–256

13. Rosen, K.H., ed.: Handbook of discrete and combinatorial mathematics. CRC
Press (2000)

A Hierarchical Markovian Mining Approach for
Favorite Navigation Patterns

Jiu Jun Chen, Ji Gao, Jun Hu, and Bei Shui Liao

College of Computer Science, Zhejiang University,
Hangzhou 310027, Zhejiang, China

rackycjj@zju.edu.cn

Abstract. This paper presents a new approach based on Hierarchical
Markov user model to mine the favorite navigation patterns. First some
new notions in the model, such as state, navigation behavior, mean stay-
ing time and favorite, are defined. And the user navigation behavior hier-
archy is then constructed. Based on the hierarchical Markov user model,
an algorithm is designed to mine the user favorite navigation paths, and
the results are good.

1 Introduction

User navigation behavior patterns are useful knowledge in practice, which can
help create a more robust web service. Some methods, such as OLAP, DM, fuzzy
theory, stochastic process, and support vector machines are used for user pattern
mining [1, 2]. Agrawal and Srikant [3] adopted sequential mining techniques to
discover web access patterns and trends. In [4], the authors proposed the maximal
forward references to break down user sessions into transactions for mining access
patterns.

Most solutions discover patterns simply according to user’s access frequency
in web logs. It is inaccurate. As we all know, pages, which visited frequently, may
not show that users have more interest in them, such as page that is only to be
utilized the links of a page to another page. At the same time, web user interests
are changeable, and it is difficult to track the exact pattern of web users. In
order to solve this issue, we first introduce the hierarchical Markov user model to
study the navigation characters. Based on the hierarchical model, an algorithm is
proposed to extract the user favorite navigation paths, and experimental example
results are discussed.

2 Hierarchical Markovian Mining for Navigation
Patterns

We model the navigation activities as a Markov process for the following reasons:
Firstly, the information about the user navigation pattern is changeable, and
Markov model can extract the changes dynamically. Secondly, the web user is

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 92–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Hierarchical Markovian Mining Approach for Favorite Navigation Patterns 93

largely unknown from the start, and may change during the exploration, and
Markov process is suited to resolve those time series problem. Some definitions
in the model are used.

Definition 1. State is a collection of one or more pages of the website with sim-
ilar functions. Besides n functional states, the model contains other two special
states, Entry and Exit. We assume that web user always enters the Entry state
before making any request, and resides in Exit state after exiting the process;

Definition 2. In a limited time, the sequence of user’s relative web requests in a
website is defined as user navigation path. It can be viewed as a sequence set of
states. It represents the navigation behavior of web user while exploring. Web
user may remain in one state, which can be viewed as reading the contents of web
pages, and also make transitions among states, which represents the requests of
pages.

Definition 3. Transition probability defines as the probability of transition from
state i to state j. We suppose that if there are n kinds of different transitions
to leave one state, the state that has higher transition probability reveals user
interest.

Definition 4. Mean staying time is the mean time which the process remains in
one state before making a transition to another state. The longer staying time,
the more interested visiting. We suppose that if there are n kinds of different
translations to leave one state, those states that have long staying time reveal
user interest. The pages that are only for a user to pass have limited staying
time. Although this page have many visited times, it can lower the interest level
according to the staying time.

Definition 5. Favorite level integrates the weight of transition probability and
mean staying time while evaluating the interest level of the visited state. It can
prevent from only mining visited states with high probability and low staying
time. In formula(1), pij is transition probability, tij is mean staying time .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fij = pij×tij

(
n+1∑
j=2

pij)(
n+1∑
j=2

tij)/(n)2

i ∈ (2, n + 1)
j ∈ (2, n + 2)

f1j = Fthreshold; j ∈ (2, n + 1)
f(n+2)(n+2) = Fthreshold
fi1 = 0 i ∈ (1, n + 2)
f(n+2)j = 0; j ∈ (2, n + 1)
f1(n+2) = 0

(1)

Based on those definitions, hierarchical Markov user models are constructed.
It assumes that, (a) Any transition can be made between functional states; (b)
No transition can be made to the Entry state; (c) No transition can be made

94 J.J. Chen et al.

from Exit state to any state other itself; (d) No transition can be made from
Entry state to Exit state. As shown in figure (1), each node is a visited states
or pages, which aggregated the statistical information of web user navigational
behavior, such as Transition Probability, Favorite Level and so on. The edges
are used to represent the transition between states. For the Hierarchical Markov
user Model, the edges that both Transition Probability and Favorite Level are
higher than the threshold are the favorite naviga-tion paths.

Entry

A G

B

<State, P, Favorite>

F

E

<A, 0.30, 3>

<B, 0.21, 5.68>

<G, 0.23, 8.68>

<E, 0.32, 5.01>

<F, 0.20, 3.74>

D

<D, 0.45, 8.06>

H

<H, 0.22, 2.35>

Exit

C

<C, 0.02, 0.50>

Fig. 1. Hierarchical Markov User Model

The following algorithm is used to mine the user favorite navigational path
from Hierarchical Markov User Model.

Algorithm HMFNPM(Output){ Favorite navigation paths}
Initialize:TEMP_STACK=NULL
FindFavoritePath(HMUM,Fthreshold,Pthreshold)

repeat
If S is Exit state, then ReturnPreviousNode(Node S);
Else VisitNode(Node S);

until TEMP_STACK IS NULL.
Return the favorite paths set;

End
VisitNode(Node S)

If S.F>=Fthreshold and S.P>=Pthreshold then
Node S is marked as a favorited node;

Else Node S is not a favorite node;
Push S into TEMP_STACK
S<-Child(S);

End
ReturnPreviousNode(Node S, TEMP_STACK)

A Hierarchical Markovian Mining Approach for Favorite Navigation Patterns 95

If TEMP_STACK is not NULL then
Pop NODE Q from TEMP_STACK
If Q is a favorite node, then

Create new path in favorite navigation pathe set
Output node Q into path
repeat

Next node R in TEMP_STACK
output R into path

until R is not a favorite node or R is a Exit state
S<-Q;

End

An example is shown in figure 1, transition probability threshold and favorite
threshold are set to be 0.2 and 3 respectively. First, a transition from Entry to
A state is made automatically. State A is visited, its transition probability and
favorite are higher than predefined threshold, and it is marked as a favorite node,
put it to the temp stack and get its child B. Because its transition probability
and favorite level are higher, state B is view as one favorite node. Then we get
the child node of B, because it is Exit state. We get the previous node B, and
return one candidate favorite path from temp stack, (Entry, A, B, Exit). The
steps are executed and finally, we can get the favorite paths sets, (Entry, A, B,
Exit), (Entry, A, B, H, Exit), (Entry, A, G, E, F, D, Exit).

3 Conclusions

In this paper, we proposed a hierarchical Markovian mining method to learn the
navigation patterns of web user. We constructed a hierarchical Markov model
to track and represent the user behaviors dynamically. Some concepts in the
model are defined, which reflect user navigation behavior accurately. Based on
the model, we designed an algorithm to mine user’s favorite path, and it show
that it is effective.

References

1. Nasraoui, O., Petenes, C.: An intelligent web recommendation engine based on fuzzy
approximate reasoning. IEEE International Conference on Fuzzy Systems, (2003)
1116-1121.

2. Rohwer, Judd, A.: Least squares support vector machines for direction of arrival
estima-tion. IEEE Antennas and Propagation Society, AP-S International Sympo-
sium (Digest), 1 (2003) 57-60.

3. Agrawal, R., Srikant, R.: Mining sequential patterns. Proceedings of the 11th
Interna-tional Conference on Data Engineering, Taipei, Taiwan, (1995) 3-14.

4. Chen, M., S., Park, J., S., Yu, P., S.: Efficient data mining for path traversal patterns.
IEEE Transaction, Knowledge Data Engineering, 10(2) (1998) 209-221.

Non-planar Orthogonal Drawings
with Fixed Topology
Extended Abstract

Markus Chimani, Gunnar W. Klau, and René Weiskircher

Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Austria

{mch, gunnar, weiskircher}@ads.tuwien.ac.at

Abstract. This paper discusses the calculation of bend minimal shapes
for non-planar graphs with given topology. Based on the Simple-Kandins-
ky drawing standard – a simplification of the more complex Kandinsky
standard – we show the disadvantage of using standard models for this
task: We show that the minimal bend count is suboptimal, when these
models are applied to non-planar graphs; it is therefore beneficial to
extend these standards.

We define such an extension for Simple-Kandinsky called Skanpag
(Simple-Kandinsky for Non-Planar Graphs). It treats edge crossings in a
special way by letting them share identical grid points where appropriate.
Hence it allows crossings of whole bundles of edges instead of single edges
only. Besides having a reduced number of bends, drawings following this
standard are easier to read and consume less area than those produced
by the traditional approaches.

In this paper, we show a sharp upper bound of the bend count, if
the standard Simple-Kandinsky model is used to calculate shapes for
non-planar graphs. Furthermore, we present an algorithm that computes
provably bend-minimal drawings in the Skanpag standard.

1 Introduction

We consider the problem of producing an ortohognal drawing of a graph in
the plane. The three-phased topology-shape-metrics approach [1, 2, 3] breaks the
drawing problem into three subproblems:

1. Topology/Planarization: The first phase calculates a topology of the given
graph. If the graph is non-planar, this includes augmenting the graph with
dummy-nodes which represent edge crossings. The main objective is to pro-
duce as few crossings as possible.

2. Shape/Orthogonalization: The second phase calculates an orthogonal shape
for the given topology. Such a shape defines the bends on the edges, and
the angles between adjacent edges. The main objective is to produce as few
bends as possible.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 96–105, 2005.
Springer-Verlag Berlin Heidelberg 2005

Non-planar Orthogonal Drawings with Fixed Topology 97

3. Metrics/Compaction: The third phase calculates the final dimensions for the
given shape, by assigning lengths to the edge segments. The main objective
is to minimize the size of the resulting drawing.

In this paper we focus on the second phase of the approach, and propose
an extension of the well-known Simple-Kandinsky drawing model, which is also
known as Simple-Podevsnef [4]. Note that Simple-Kandinsky is a simplification of
the more complex Kandinsky/Podevsnef standard (Planar orthogonal drawing
with equal vertex sizes and non-empty faces) [5]. All of the above models define
orthogonal drawings with equal node size where multiple edges can be attached
to a single side of a node. In contrast to Kandinsky, Simple-Kandinsky has
certain restrictions on how these bundles split up. We give a brief introduction
to the Simple-Kandinsky model and its corresponding algorithm, which is based
on a min-cost-flow network, in Section 2.

Our extension, which is called Skanpag (Simple-Kandinsky for Non-Planar
Graphs), is discussed in Section 3. It allows the dummy-nodes introduced in
the planarization phase to share positions on the drawing grid under certain
conditions. In general, this leads to a reduction of the number of bends, as well
as to a smaller area required by the drawing. Furthermore, it increases the overall
readability of the resulting drawing.

We show an upper bound of the bend count for the use of classic Simple-
Kandinsky on non-planar graphs in Section 4. In Section 5 we present an al-
gorithm that generates a bend-minimal Skanpag-compliant shape (for a given
topology). To our knowledge, this algorithm is the first that can draw non-planar
graphs with the minimum number of bends in the Simple-Kandinsky model. Al-
though our method is based on an integer linear program (ILP), its running time
is very low in practice, even for large and dense graphs – drawing, e. g, the K25
takes under 50 seconds. This is discussed in detail in Section 6. We conclude
with Section 7 where we also present our ideas for further research in this field.

Since most of the proofs are quite technical and long, we only outline them
in this extended abstract. Details can be found in [6, 7].

A related approach has been followed by Fößmeier and Kaufmann in [8] for
the Kandinsky drawing standard. However, their method relies on the incorrect
assumption that all LPs with integer coefficients would result in integer solution
vectors and is beyond remedy [6].

2 The Simple-Kandinsky Model

The first polynomial approach to generate bend-minimal shapes was given by
Tamassia [9], and is based on transforming the problem into a min-cost-flow net-
work. This original method is restricted to graphs with maximum degree four.

Several attempts have been made to extend the method to the larger class of
planar graphs with arbitrary node degrees. We focus on a model where nodes are
drawn with uniform size. Fößmeier and Kaufmann have introduced the Kandin-
sky drawing standard [5]. By using a fine grid for the edges and a coarser grid

98 M. Chimani, G.W. Klau, and R. Weiskircher

for the nodes, it is possible that several edges emanate from the same side of a
node, forming 0 angles between them. Furthermore, the standard does not al-
low faces with angle sum 0 . The authors present a minimum-cost flow approach
with additional constraints on the flow that can be realized, for instance, using
an ILP approach as in, e. g., [10] or in the AGD library [11].

Recently, Bertolazzi, Di Battista, and Didimo have proposed a simplification
of this standard – which we will refer to as the Simple-Kandinsky standard – by
adding the following restrictions [4]:

(S1)Each node with degree ≥ 4 has at least one edge emanating from each of its
four sides. No node with degree ≤ 4 is allowed to have 0 angles.

(S2)For each two neighboring edges that leave a node on the same side, the first
bend on the rightmost edge is a right bend.

The authors present a polynomial-time algorithm based on a network flow
model that computes bend-minimal drawings of planar graphs with fixed topol-
ogy in this standard. Here, we present a slightly modified but equivalent flow
model for this task. Although larger by a constant factor, it is favorable for our
purposes due to its simplicity, consistency, and straightforward extendibility.

Let G = (V,E) be a planar graph with given topology, characterized by the
face set F with outer face fo. We create an underlying min-cost-flow network with
two different types of directed edges: (a) arcs from the nodes v ∈ V to incident
faces f ∈ F with zero cost, and (b) arcs with unit cost between adjacent faces.

Each unit transported in this network corresponds to a 90 angle: A flow of
x units on an arc between a node v′ ∈ V and a face f ′ ∈ F implies an angle
of x · 90 on f ′ at v′. Each flow unit on an arc from the face f ′ to f ′′ (∈ F)
introduces a 90 bend on the edge e′ ∈ E that is on the border of both faces.

The capacities of the arcs as well as the supplies and demands of the nodes
in the network are straightforward, and similar to the original Tamassia model:
Each node v ∈ V has a supply of four units which corresponds to 360 ; each face
f ∈ F −{fo} has a demand of 2 deg(f)−4, while the outer face fo has a demand
of 2 deg(fo) + 4, where deg(.) denotes the number of edges bounding a face.

To satisfy constraints (S1) and (S2) – and therefore guarantee valid drawings
– we have to apply an augmentation to the network for each high-degree node in

Fig. 1. Network construction (left) and correctly augmented network (right); (circles
and triangles represent nodes and faces, resp., dashed arcs are unchanged by the aug-
mentation, irrelevant arcs are not shown)

Non-planar Orthogonal Drawings with Fixed Topology 99

V (see Fig. 1): We add a cyclic substructure of demand-free nodes. Each of these
nodes is the target of an arc of type (b) which causes right bends and an arc
of type (a). Furthermore, we insert arcs between the new nodes and the faces
surrounding the high-degree node; these arcs have a lower flow bound of one
unit. The construction guarantees that if two edges leave a node on the same
side, forming a 0 angle, the right edge of this bundle has to have a right bend.

3 Theory of Hyper-Faces – The Skanpag Model

The key to bend-minimality for non-planar graphs is to allow certain dummy-
nodes to share a grid point, see Fig. 2(a). Nodes that share a grid point are said
to be merged. Faces that become empty by such a merge, are said to be collapsed.

If not stated otherwise, let Go = (Vo, Eo) be a non-planar, simple, and self-
loop-free graph. The graph G = (V,E) denotes the planarization of Go (based
on a topology To). Let T be the planar topology of G that the drawing should
be based on, and F the face set implied by T . We have V = Vo ∪D, where D is
the set of the dummy-nodes introduced by the planarization.

Definition 1. If an edge eo ∈ Eo is split up into several sub-edges ei ∈ E during
the planarization, we call the set {ei} the meta-edge of any of these ei.

To extend Simple-Kandinsky for non-planar graphs in the most general way,
we have to demand its properties only for the underlying non-planar graph Go,
not for the planarized graph G. Hence we demand a right bend on bundles for
the meta-edges instead of only for their first sub-edges.

This leads to the analysis of bundles of meta-edges, and when their dummy-
nodes are allowed to merge. Two meta-edges can only (partially) merge, if they
emit from a common source node s ∈ Vo with deg(s) > 4 (see property (S1)).

(a) Merging in Skanpag (right)
compared to Simple-Kandinsky
(left)

m2

m1

e2

e1

eH
1

(b) Meta-edges (m1, m2),
hyper-face, and hyper-edge
(eH

1)

Fig. 2. Definitions. Original nodes are circles, dummy-nodes are squares

100 M. Chimani, G.W. Klau, and R. Weiskircher

Therefore we can deduce the two different structures of faces in F which might
collapse:

– collapsible triangle (“coltri”): A face that has exactly one incident node with
a degree greater than four (the source node s of a bundle), and two incident
dummy nodes.

– collapsible quad (“colquad”): A face that has exactly four incident dummy
nodes.

This leads to the concept of hyper-faces (see Fig. 2(b)):

Definition 2. Let e1 and e2 be the edges incident to a coltri f0 and its high
degree node s. A hyper-face fH

0 is a sequence of faces that starts with f0, contains
any number of colquads, and ends with a face other than a colquad. All its faces
have to be incident to a sub-edge of the meta-edges of e1 and to a sub-edge of
the meta-edge of e2.

Note that we only consider simple graphs; hence a hyper-face end-face can
never be a coltri.

We can merge a pair of dummy-nodes that lie on the border of such a hyper-
face, see Fig. 2(a), as long as there are no bends which cause a split up (“de-
merge”).

If not stated otherwise, we will give directions on the hyper-face in its natural
orientation, where the coltri is at the bottom (as in Fig. 2(b)). We assume that
m1 (the meta-edge of e1) is on the right side of the hyper-face. To satisfy the
Simple-Kandinsky constraints, we have to assure that m1 has at least one right
bend before any left bend, and before m2 (the meta-edge of e2) has a right bend.

It is clear that such a right bend has to happen before we would be forced to
merge a dummy-node with an original node. Hence we can specify the constraint
that such a right bend has to happen on the hyper-edge:

Definition 3. The hyper-edge eH
1 is an ordered subset of the meta-edge m1 and

contains all the edges of the meta-edge that are on the boundary of sub-faces of
the according hyper-face (see Fig. 2(b)). The analogously defined subset of m2 is
the partner edge of the hyper-edge.

We can summarize these observations: Skanpag has to force a right bend
on each hyper-edge, if its respective coltri has an opening angle of 0 . We can
merge dummy-nodes if and only if their two meta-edges leave a node on the
same side, and do not have any bends that would cause a split up of the bundle.
Note that edges incident to a high degree node that have not been split up by
the planarization step still have to satisfy property (S2) of standard Simple-
Podevsnef instead.

4 Quality Guarantee of Simple-Kandinsky

Prior to Skanpag, the only way to draw non-planar graphs was to use a planar
drawing standard as a heuristics. We look at the special case of using Simple-

Non-planar Orthogonal Drawings with Fixed Topology 101

Kandinsky, because of its strong relationship to Skanpag . Furthermore, Simple-
Kandinsky seems to be a good compromise between simplicity, execution time,
and quality. Hence it is quite interesting to assess the quality difference between
Simple-Kandinsky used as a heuristics and Skanpag on non-planar graphs.

Note that for planar graphs, the minimum number of bends is equal for
Simple-Kandinsky and for Skanpag. Since there are no hyper-faces in planar
graphs, there are no additional constraints, and hence no difference in the solu-
tion.

Also note that the minimal bend count in Simple-Kandinsky can never be
lower than Skanpag’s: Each valid Simple-Kandinsky solution defines a valid
Skanpag solution with the same number of bends because Simple-Kandinsky’s
right-bend constraint is a specialization of the corresponding constraint for
hyper-faces in Skanpag.

Theorem 1. For any given planarized graph G = (V,E) and its planar topology
T with h hyper-faces, Simple-Kandinsky requires at most h more bends than
Skanpag.

Proof. We assume that a Skanpag-algorithm has calculated a valid shape. The
following observation holds true for every hyper-face hi: If the opening angle of
hi is 90 or if there is a right bend on the first sub-edge of hi, this shape is valid
for Simple-Kandinsky, too.

If the coltri has an opening angle of 0 and there is no right bend on the
first sub-edge of the hyper-edge of hi, it is not a valid Simple-Kandinsky shape
(Fig. 3(a), left). But we can achieve a related Simple-Kandinsky shape by in-
creasing the opening angle from 0 to 90 and adding one right bend on the
bundle partner of hi (Fig. 3(a), right).

This transformation is not influenced by collapsed coltris to the left of hi,
since these have to be extended by analogous bends themselves to become
Simple-Kandinsky compliant. Neither does the transformation influence its sur-
rounding area, since its overall shape remains the same.

Hence we need at most one more bend for each hyper-face to transform a
Skanpag shape into a valid Simple-Kandinsky drawing. ��

(a) A valid hyper-face in Skanpag
may need one more bend in Simple-
Kandinsky

(b) Example where the heuristic
solution is as bad as it gets

Fig. 3. Simple-Kandinsky as a heuristics

102 M. Chimani, G.W. Klau, and R. Weiskircher

Corollary 1. The bound given in Theorem 1 is tight.

Proof. Fig. 3(b) shows the graph used as a building block, containing exactly one
hyper-face. We can put an arbitrary number of these blocks next to each other
(joined by a simple edge). For every block, Simple-Kandinsky needs at least two
bends, but Skanpag requires only one. Hence Simple-Kandinsky requires exactly
h bends more than Skanpag. Note that each block is optimally planarized, since
there exists no other planarization generating less than two dummy-nodes per
block. ��

5 An Algorithm for Bend Minimal Skanpag-Drawings

Due to lack of space, we only outline the following algorithms. We implemented
them as part of the AGD library [11] which is available freely for research pur-
poses. Details, as well as the corresponding proofs, can be found in our technical
paper [7] or in [6].

To solve the bend minimization problem, we use an ILP that models the
underlying min-cost-flow network introduced in Section 2 and contains the right-
bend-on-hyper-edge constraint.

While in Simple-Kandinsky the simple right-bend rule is enough to guarantee
valid drawings, this is no longer true for Skanpag. Hence we need an in-depth
analysis of the situations that could render a correct drawing of hyper-faces
impossible. Note that if all hyper-faces are drawn correctly, the complete graph
will be drawn correctly (see the proof of Simple-Kandinsky’s validity in [4]).

If the coltri of a hyper-face has an opening angle of 90 , the drawing of
the hyper-face is always valid (this follows from the correctness of Simple-
Kandinsky). Hence we only have to analyze the case of a 0 opening angle.

By careful enumeration we can deduce two different types of situations that
inhibit valid drawings of a hyper-face:

1. A flow unit that leaves a collapsed sub-face to its left side, and reenters over
the same side. (Although this situation seems like a contradiction to the
objective function, it occurs in bend-minimal drawings – both in Skanpag
and in Simple-Kandinsky – to generate necessary right bends)

2. A flow unit sent from a sub-face f1 into its neighboring sub-face f2 below it.
(a) The flow unit is not sent directly backwards from f2 to f1
(b) The flow unit is sent directly backwards from f2 to f1

We can show that we can prohibit all type 1 and type 2a errors by simple
changes of the network structure, without cutting off the optimal solution. The
errors of type 2b, however, are more complicated. They could, e. g., be avoided by
additional constraints in the ILP, but these would introduce new 0/1-variables.
Therefore we propose a different approach using a repair-function:

We solve the ILP without handling type 2b errors and thus generate an
almost valid solution. This solution can then be repaired by a polynomial helper
function. The principle of this repair function is to analyze the remaining errors

Non-planar Orthogonal Drawings with Fixed Topology 103

and move the corresponding flows to other positions. It ensures that all bend
properties and constraints are still satisfied afterwards, but the formerly invalid
flows do not generate errors anymore.

Our repair-function has an upper time bound of O(h2l2max), where h is the
number of hyper-faces and lmax the cardinality of the longest hyper-face. This
bound can be estimated more generously as O(|E|2).

6 Computational Results

The Rome graphs [12] are a well established collection of 11529 graphs based on
112 graphs taken from real-world applications. They have between 10 and 100
nodes each, and 3280 graphs are planar. But even the non-planar graphs are
quite sparse and have therefore very few dummy-nodes after the planarization
step. Nearly 7000 graphs do not have any hyper-face at all and 1500 others
contain only one. Thus we know from Theorem 1 that we cannot expect big
differences between Simple-Kandinsky and Skanpag . The implementation of
our new method solves all these graphs without any need for the repair-function,
nor does the LP-relaxation ever produce non-integer solutions.

0.7

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100

B
E

N
D

S
-Q

uo
tie

nt
 (

S
ka

np
ag

 /
S

im
pl

eP
od

ev
sn

ef
)

NODES

min
average

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

A
R

E
A

-Q
uo

tie
nt

 (
S

ka
np

ag
 /

S
im

pl
eP

od
ev

sn
ef

)

NODES

min
average

(b)

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

T
IM

E
 (

se
c)

NODES

max
average

min

(c)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

5 10 15 20 25 30

B
E

N
D

S
-Q

uo
tie

nt
 (

S
ka

np
ag

 /
S

im
pl

eP
od

ev
sn

ef
)

NODES

(d)

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

A
R

E
A

-Q
uo

tie
nt

 (
S

ka
np

ag
 /

S
im

pl
eP

od
ev

sn
ef

)

NODES

(e)

0.01

0.1

1

10

100

1000

5 10 15 20 25 30

TI
M

E
 (s

ec
)

NODES

Skanpag
SimplePodevsnef

(f)

Fig. 4. Performance of Skanpag, relative to Simple-Kandinsky. Top row: squared
Rome graphs; bottom row: complete graphs. The peak at (f) is because the ILP-solver
had to do several branches

104 M. Chimani, G.W. Klau, and R. Weiskircher

01

2 3

4

5

6

7

8

9

(a) Skanpag

0

1

2

3

4

5

6

78

9

(b) Simple-Kandinsky

0

1

2 34

5

6

7

8

9

(c) Kandinsky

Fig. 5. Graph with 10 nodes and 42 edges, drawn using three different standards

Since this test suite is too sparse to show the difference between Skanpag and
Simple-Kandinsky, we squared each of the Rome graphs. The resulting graphs
are still not extremely dense, but have more hyper-faces: only about 1200 still
have none.

If not otherwise stated, the statistics compare Skanpag to Simple-Kandin-
sky. As Fig 4(a) shows, we need nearly 10% less bends in the average case for
big graphs, with peak values of up to 25%. The size of the drawing (Fig 4(b))is
reduced by over 20% on average. In some cases, we reduce the area consumption
by 60%. As Fig 4(c) shows, the runtime performance of Skanpag is acceptable
even for large and dense graphs.

We also tested Skanpag with complete graphs (up to K30), to demonstrate
the quality advantage for dense graphs. Note that the planarization of K30 has
nearly 11000 dummy nodes. Fig 4(d) shows that we can save 15%-20% of bends
for all such graphs with over 11 nodes; the area savings are even higher (up to
50%, see Fig. 4(e)). Figure 4(f) shows the runtime performance of Skanpag and
Simple-Kandinsky.

Figure 5 shows an example of a quite dense graph, drawn by Kandinsky,
Simple-Kandinsky, and Skanpag (equally scaled). More examples and details
on the statistics can be found in [6].

7 Conclusion and Further Work

We have presented a new approach for drawing non-planar graphs that takes
the special properties of dummy nodes into account. Our algorithm guarantees
the minimum number of bends for any given topology following the Simple-
Kandinsky properties, by the use of an integer linear program. It is the first
approach to solve this problem and due to our polynomial time repair function,
the runtime is acceptable even for large and dense graphs.

Non-planar Orthogonal Drawings with Fixed Topology 105

Note that our algorithm can also be used for drawing clustered graphs orthog-
onally. These are usually drawn by modeling the cluster boundaries as circles
consisting of dummy-nodes and dummy-edges [13, 14]. By treating the dummy-
nodes on the cluster boundaries just like any other dummy-node, we can achieve
savings in bends and area compared to previously known algorithms.

The complexity of producing bend-minimal drawings in the Skanpag model
is still unknown. This – as well as the complexity proof for the Kandinsky model
itself – is an interesting field of future study.

References

1. Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data flow diagrams.
IEEE Trans. Softw. Eng. 12 (1986) 538–546

2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing. Prentice Hall
(1998)

3. Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability
of diagrams. IEEE Trans. Syst. Man. Cybern., SMC-18(1) (1988)

4. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with
the minimum number of bends. IEEE Transactions on Computers 49 (2000) 826–
840

5. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers.
In Brandenburg, F.J., ed.: Proc. of the 3rd Int. Symp. on Graph Drawing (GD
1995). Volume 1027 of Lecture Notes in Computer Science., Passau, Germany,
Springer (1996) 254–266

6. Chimani, M.: Bend-minimal orthogonal drawing of non-planar graphs. Master’s
thesis, Vienna University of Technology, Department of Computer Science, Austria
(2004)

7. Chimani, M., Klau, G., Weiskircher, R.: Non-planar orthogonal drawings with
fixed topology. Technical Report TR 186 1 04 03, Institute of Computer Graphics
and Algorithms, Vienna University of Technology (2004)

8. Fößmeier, U., Kaufmann, M.: Algorithms and area bounds for nonplanar orthogo-
nal drawings. In: Proc. 6th Symposium on Graph Drawing (GD’97). Volume 1353
of LNCS. (1997) 134–145

9. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16 (1987) 421–444

10. Eiglsperger, M., Fößmeier, U., Kaufmann, M.: Orthogonal graph drawing with con-
straints. In: 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1999). (1999) 3–11

11. Jünger, M., Klau, G.W., Mutzel, P., Weiskircher, R.: AGD: A Library of Algo-
rithms for Graph Drawing. Mathematics and Visualization. In: Graph Drawing
Software. Springer (2003) 149–172

12. Di Battista, G., Garg, A., Liotta, G.: An experimental comparison of three graph
drawing algorithms (extended abstract). In: Proceedings of the eleventh annual
symposium on Computational geometry, ACM Press (1995) 306–315

13. Battista, G.D., Didimo, W., Marcandalli, A.: Planarization of clustered graphs.
In: Graph Drawing (Proc. GD 2001). Volume 2265 of LNCS. (2001) 60–74

14. Lütke-Hüttmann, D.: Knickminimales Zeichnen 4–planarer Clustergraphen. Mas-
ter’s thesis, Saarland University, Department of Computer Science, Saarbrücken,
Germany (2000)

A Topology-Driven Approach to the Design of
Web Meta-search Clustering Engines�

Emilio Di Giacomo, Walter Didimo, Luca Grilli, and Giuseppe Liotta

Dipartimento di Ingegneria Elettronica e dell’Informazione,
Università degli Studi di Perugia, Perugia, Italy

{digiacomo, didimo, grilli,liotta}@diei.unipg.it

Abstract. In order to overcome the limits of classical Web search en-
gines, a lot of attention has been recently devoted to the design of Web
meta-search clustering engines. These systems support the user to browse
into the URLs returned by a search engine by grouping them into distinct
semantic categories, which are organized in a hierarchy. In this paper we
describe a novel topology-driven approach to the design of a Web meta-
search clustering engine. By this approach the set of URLs is modeled as
a suitable graph and the hierarchy of categories is obtained by variants
of classical graph-clustering algorithms. In addition, we use visualization
techniques to support the user in browsing the categories hierarchy.

1 Introduction

As the amount of information accessible on the Web super-exponentially in-
creases, there is a growing consensus that the paradigm adopted by most popu-
lar search engines to output the results of a query is becoming inadequate (see
e.g. [6, 20, 21]). Indeed, such output typically consists of a ranked list of URLs,
which may be very long and difficult to browse for the interested user. Espe-
cially in cases of polisemy (one word may have several different meanings) it is
useful that the output returned by a search engine be organized into categories
grouping documents strongly related from a semantic view point.

Indeed, a lot of attention has been recently devoted to the design of Web meta-
search clustering engines (see e.g. [6, 8, 14, 16, 17, 20, 21]). A Web meta-search clus-
tering engine is a system that behaves as follows: (i) It receives a query from the
user, and forwards it to one or more Web search engines that can be automati-
cally accessed over the Internet; (ii) It selects a subset of the URLs returned by
the search engines and groups these URLs into clusters, which are presented to
the users as a hierarchy of categories. In order to make its output expressive and
to allow a reasonable on-line interaction, a Web meta-search clustering engine
should satisfy the following basic requirements:

� Research supported in part by “Progetto ALINWEB: Algoritmica per Internet e per
il Web”, MIUR Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 106–116, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Topology-Driven Approach to the Design of Web Meta-search 107

– Efficiency. The system should be sufficiently fast in reacting to a user query.
– Effective Clustering. The URLs in each cluster should be strongly related from
a semantic view point.
– Expressive Labeling. Each category should be labeled with a word or a sentence
that clearly reflects the topic shared by its URLs.

As for the first requirement, it is clear that efficiency cannot be achieved if the
meta-search clustering engine relies on downloading and parsing all documents
that are returned by the search engine. Therefore, those techniques that compute
communities from the Web graph by assuming that the pages can be downloaded
and parsed (for example for extracting hyperlinks) cannot immediately be used
for the design of a meta-search clustering engine. A very limited list of such
clustering techniques includes [1, 7, 9, 11, 16].

Concerning the other two requirements, there is no general consensus about
the best design approach to achieve them. Evaluating the effectiveness of a clus-
ter and the expressiveness of its label strongly depends on the semantic context of
the query and on the user judgment. As a matter of fact, even the most effective
Web meta-search clustering engines usually end-up by presenting many “mean-
ingful” categories together with a few “inexpressive” categories on some specific
queries. This phenomenon is particularly uncomfortable if the categories whose
labels do not seem to make much of sense actually contain documents that are
semantically related to meaningful categories and contain strategic information
for the user.

In this paper we describe a novel topology-driven approach to the design
of a Web meta-search clustering engine. By this approach the set of URLs is
modeled as a suitable graph and the computation of the categories and of their
associated labels is obtained by variants of classical graph-clustering algorithms.
The topology-driven approach turns out to be comparable with traditional text-
based strategies for the definition of the clusters hierarchy. In addition, our
approach makes it natural to use graph visualization techniques to support the
user in handling inexpressive labels. Namely, categories with inexpressive labels
can be visually related to more meaningful ones. To the best of our knowledge,
there is only one Web meta-search engine (Kartoo1) that supports the user
with graph visualization. However, Kartoo only shows the inclusion relationships
between documents and categories, and it does not provide sufficient support to
visually comprehend the semantic connections among different clusters.

Our main results can be listed as follows:
– We introduce and study the concept of snippet graph that describes semantic
relations between the snippets of the URLs returned by a search engine.
– We engineer and modify known clustering techniques to identify categories by
a topological analysis of the snippet graph.
– A new visualization paradigm is introduced to display the clusters hierarchy.
It uses advanced graph drawing methods to visualize semantic relationships be-
tween apparently unrelated categories.

1 http://www.kartoo.com/

108 E. Di Giacomo et al.

– We present a prototype of WhatsOnWeb, a Web meta-search clustering engine
that has been designed according to the topology-driven approach.
– Finally, the results of an experimental analysis that show the behavior of
WhatsOnWeb and that compares it with state-of-the-art systems are discussed.

2 Web Meta-search Clustering Systems: State of the Art

In the field of Web meta-search clustering engines, there are two different types
of systems: commercial and academic systems. As also pointed out by other
authors [6], commercial systems currently offer the best performances, both in
terms of quality of the results and in terms of efficiency. Unfortunately, there
is no scientific publication that describes the technology of commercial tools.
Among them, Vivisimo 2 is considered from the majority of people as the most
effective Web meta-search clustering engine. A limited list of other commercial
meta-search clustering engines includes Groxis, iBoogie, Kartoo, Mooter.

In the academic systems scenario, an important contribution comes from
Grouper [19, 20], that uses a clustering approach based on the analysis of the
so called Web snippets. A Web snippet (or simply snippet) is a small portion of
text that a Web search engine returns associated with each URL in response to
a user query; it represents a brief summary of the document addressed by the
URL. A Web snippet approach consists in computing clusters and their labels by
analyzing text similarity between snippets. In [19] the authors describe a linear
time algorithm (called STC algorithm) based on a suffix tree data structure,
and provide experiments that show the effectiveness and the efficiency of their
approach with respect to previous clustering techniques. They also performed ex-
periments that compare the precision of several document clustering algorithms
(included STC) when applied on snippets instead of on whole documents. Their
experiments show that this precision does not decrease significantly, i.e., snippet
clustering is in most cases a “good” approximation of document clustering. Some
recent works related to the Web snippet approach are [6, 14, 17, 21]. In particu-
lar, SnakeT3 [6] is a well documented academic system that appears promising
especially for what concern the labeling of categories.

Although the current systems based on the Web snippet approach use dif-
ferent specific algorithms to determine clusters, most of them adopt a common
general strategy. They first compute a set of so called base clusters, possibly over-
lapping, and then recursively merge those clusters that have large overlapping
and organize them in a hierarchy, from bottom to top. Both the computation
of base clusters and their organization in a hierarchy are mainly based on text
analysis techniques, while clustering algorithms that rely on the topology of a
computed graph have in our opinion not yet received enough attention in the
specific context of designing Web meta-search clustering engines.

2 http://www.vivisimo.com/
3 http://roquefort.di.unipi.it/

A Topology-Driven Approach to the Design of Web Meta-search 109

3 A Topology-Driven Approach

The topology-driven approach is simple and intuitive. It is based on the new
concept of snippet graph of a set of URLs, which implicitly represents a global
view of the semantic relationships between these URLs; for efficiency reasons,
these relationships are constructed analyzing the title and snippet text associ-
ated with each URL. A high-level description of the approach and of its benefits
is as follows. Let U be a set of URLs returned by a Web search engine in re-
sponse to a user query. (i) We define the snippet graph of U as a weighted
graph whose vertices represent the elements of U and whose edges represent re-
lationships between the snippets of the elements of U . The weight of each edge
informs about the strength of the relationship between the end-vertices of the
edge. Intuitively, the snippet graph summarizes a self-contained set of semantic
relationships between elements of U . (ii) Once a snippet graph G of U have
been computed, we apply on G an algorithm that extracts clusters in G, and
that organizes them into a hierarchy, which will be presented to the user. The
clustering algorithm works within the assumption that groups of strongly con-
nected vertices are semantically related. (iii) Clusters are labeled by using some
text information associated with the vertices and the edges of the snippet graph.
These information are definitively stored during the snippet graph construction.

The proposed topology-driven approach has two main advantages with re-
spect to previous snippet clustering strategies: (a) The snippet graph gives a
global view of the relationships between a set of URLs. Computing clusters by
considering the structure of this graph appears more reasonable and, intuitively,
more powerful than independently evaluating text similarity between pairs of
snippets. Also, there are several effective algorithms that can be used to con-
struct a clusters hierarchy in a general graph (see e.g. [2, 10, 13, 18]). (b) Con-
structing a clusters hierarchy on the snippet graph makes it natural to handle the
relationships between distinct clusters. These relationships can be visualized in
order to support the user when the labeling of some categories is not sufficiently
expressive.

3.1 The Snippet Graph

Let U be a set of URLs returned by one or more search-engines in response to
a user query. In the following, if u ∈ U , we call text of u the concatenation of
the title and the snippet associated with u. We analyze the text of all elements
of U and, as usual, we clean them by removing both stop-words and words that
appear in the user query. We then apply a stemming algorithm on the cleaned
texts; with every computed stem s we associate a bag Bs of words whose stem
is equal to s. Sets Bs will be used later for labeling the clusters. Also, we assign
a score fs to each stem s; fs measures the importance of a semantic relationship
between URLs whose texts contain s. Several criteria can be used to determine
function fs. The simplest is to assign a constant value to each stem, for example
fs = 1. Another possibility is to adopt a function based on the frequency of s in
all the texts of the elements of U .

110 E. Di Giacomo et al.

The snippet graph G of U is a labeled weighted graph defined as follows: (i) G
has a vertex vu associated with each element u ∈ U . The label of vu can be either
the title of u or its description as URL. (ii) G has an edge e = (vu1 , vu2) (where
u1, u2 ∈ U) iff the texts of u1 and u2 share a non-empty set S of (stemmed)
words. The weight we of e is the sum of all scores of the elements of S, i.e.
we =

∑
s∈S fs. The label of e is a list of all words of S.

3.2 Computing Clusters in the Snippet Graph

In order to determine clusters in the snippet graph, we look for communities of
vertices, i.e. set of vertices that are strongly related from a topological view point.
Among the wide range of graph clustering approaches proposed in the literature
we point our attention on those adopting a recursive decomposition strategy
based on edge connectivity (see, e.g. [2, 10, 13]). Namely, the clusters hierarchy
is determined by recursively cutting some edges that disconnect the graph; they
mainly differ for the criteria used to choose the next edge to be removed. We
apply the definition of community recently given by Brinkmeier [2], which is
strongly related to the definition of k-component introduced by Matula [12]. Let
G be a graph and let S be a subset of vertices of G. According to the definition
in [2], the community of S in G is the largest subgraph of G of maximum edge
connectivity among all subgraphs containing S. This definition appears quite
natural and is particularly effective for two main reasons: (i) The community
of every subset of vertices of G is uniquely determined. This is not true for the
other definitions based on edge connectivity. (ii) It naturally induces a clusters
hierarchy on G that implicitly describes all the communities of subsets of vertices
of G. Each cluster of the hierarchy represents a different community viewed at
a specific level of abstraction, and the vertices of G are atomic communities.
Graph G together with its clusters hierarchy can be described as a clustered
graph according to the definition given by Feng et al. [5]. The clusters hierarchy
is described as a tree, where the leaves are associated with the vertices of G
and the internal nodes are the non-atomic clusters of G. We call this tree the
community tree of G.

Let G be the snippet graph of a set U of URLs. We use the decomposition
strategy in [2] as a basic tool for constructing the cluster hierarchy of the snippet
graph G. This cluster hierarchy, which we denote as HG, is a tree whose internal
nodes represent the different semantic categories. The root of HG is a node
representing the whole set of URLs. The nodes of level i (i > 0) are referred
to as level-i categories. In particular, the level-1 categories partition the set of
all URLs and represent the macro categories initially shown to the user. Each
of these categories can be itself partitioned into disjoint sub-categories, that are
level-2 categories, and so on. The leaves of HG represent URLs. Notice that,
HG does not allow repetition of URLs, i.e. all its leaves correspond to distinct
URLs. This implies that every URL is put in exactly one deepest category, and
therefore deepest clusters never overlap. We now describe how to compute HG.
The set of level-i categories of HG is denoted by Li.

A Topology-Driven Approach to the Design of Web Meta-search 111

Computing and Labeling Level-1 Categories. The level-1 categories are
computed as follows:
(1) Initially set L1 as empty; (2) Compute the community tree T of G and
consider the nodes of T that have only leaf-children. Add these nodes to L1; (3)
Let G′ be the graph obtained by deleting from G all vertices corresponding to
the children of nodes in L1, and let T ′ be the community tree of G′. Again, add
to L1 those nodes that have only leaf-children; (4) Iterate Step 2 until a desired
set of level-1 categories has been determined. In practice, 7 − 8 iterations are
enough to compute the most meaningful categories.

To label the level-1 category represented by a node μ of HG, we apply the
following procedure. Let Gμ be the subgraph of G induced by the children of μ,
and let S be the set of stemmed words associated with the edges of Gμ. If s ∈ S
is associated with k (k > 0) edges, then kfs is called the total score of s in Gμ.
Denote by Smax ⊆ S the subset of stemmed words of S that have maximum total
score in Gμ. For each stemmed word s ∈ Smax, we select one representative word
bs ∈ Bs; then, we label μ with the set of words in Bμ = ∪s∈Smax

bs. In practice,
Bμ often consists of a single word and rarely consists of more than two or three
words. Keeping category labels short, but still expressive, simplifies the amount
of information that the user must deal with.

Computing and Labeling Level-i Categories. The computation of the level-
i categories (i > 1) is done similarly to the level-1 categories by using a recursive
approach that progressively simplifies the snippet graph. Namely, suppose that
all the level-i categories have been computed, for some i ≥ 1. We compute the
level-(i+1) categories as follows: (1) For each node μ of HG representing a level-i
category, let Gμ be the subgraph of G induced by the vertices in μ. Compute
the graph Gμ

−, obtained from Gμ by subtracting to the edge weights and labels
the contribution of the words in Bμ. (2) Compute Li+1 by applying on every
Gμ

− the same procedure as the one applied on G for computing L1. The nodes
in Li+1 obtained from Gμ

− are made children of μ in HG.
When the decomposition algorithm of a level-i category μ does not produce

sub-categories for μ, we stop the decomposition process for the subtree rooted
at μ. Concerning the labeling procedure of level-i categories, it is the same as
the one for level-1 categories.

Computing the Leaves. Let Li (i ≥ 1) be the set of the deepest categories
of HG. For each μ ∈ Li, we make all the vertices of G in μ as children of μ.
They represent the leaves of HG. Each leaf of HG is labeled with the title of its
corresponding URL.

Concerning the theoretical time complexity of constructing HG, it mainly
depends on the complexity of computing a community tree. Indeed, both the
number of levels of HG and the number of iterations applied to determine the
nodes of each level can be set to constant numbers, using an empirical evaluation.
To compute the community tree, Brinkmeier [2] describes an O(n2m + n3 log n)
technique based on recursively applying a minimum cut algorithm several times
(n and m are the number of vertices and the number of edges of the input graph,

112 E. Di Giacomo et al.

respectively). However, as also discussed in [2], the computation of a minimum
cut can be avoided in many cases during the whole decomposition, using some
simple considerations on the degree of the vertices. This dramatically reduces
the running time in practice (see Section 4).

3.3 A New Visualization Paradigm

Most of the current Web meta-search engines adopt a simple visualization pa-
radigm. The user can browse the categories through the same interface used to
explore the content of a file system. The main limit of this approach is that no
information are provided to the user about the relationships between distinct
categories. These information can be of help, especially when the labeling of the
categories is not sufficiently expressive. Also, recursively exploring nested nodes
in the categories tree can rapidly lead to a very “high” drawing, which cannot be
effectively displayed on a computer screen and hence difficult to manage for the
user. Further, re-drawing the categories tree from scratch during the browsing
may significantly change the user mental map. For the above motivations, be-
side to the standard tree of categories, we propose a new visualization paradigm,
which has the following characteristics: (i) A clustered drawing of the snippet
graph G is presented to the user; the clusters correspond to the nodes of HG. (ii)
In each cluster we do not show the relationships induced by words in the label of
the cluster, because their existence can be implicitly assumed due to the nature
of the cluster itself. We show all the other semantic connections; they mainly
give information about the relationships between distinct categories. (iii) Clus-
ters can be expanded or contracted at each time preserving “as much as possible”
the user mental map. To this aim we adopt an engineered version of orthogonal
graph drawing techniques described in [3, 15]. Expanding or contracting clusters
make it possible to explore the categories at different abstraction levels.

For reasons of space we do not describe in detail our visualization paradigm
(for the details see [4]). Figure 1 shows an example of drawing for the query
“Armstrong”. The category “Lance” and its subcategory “Story” are expanded.

Fig. 1. Map of the level-1 categories for the query “Armstrong”. The category “Lance”
and its subcategory “Story” are expanded

A Topology-Driven Approach to the Design of Web Meta-search 113

4 Experimental Analysis

We designed a system, called WhatsOnWeb, according to the principles of the
topology-driven approach presented in Section 3. A first prototype implementa-
tion of WhatsOnWeb is available on-line 4. In this implementation we retrieve data
from Google and correctly handle the English language. We used WhatsOnWeb
to perform a preliminary experimental analysis that evaluates the effectiveness
of our topology-driven approach from a user perspective. In our experiments we
did not involve human judgments, since it can strongly vary with the chosen
subjects and it does not allow us to replicate the experiments in future works
and comparisons. Instead, we aim at detecting a number of objective parameters
that can be automatically measured and that reflect some important aspects for
the browsing of the user. We take into account three main aspects:

Efficiency. We measured the time required by our system to generate a response
to a user query.

Structure of the Hierarchy. In order to evaluate the quality of the hierarchy
from the structural side, we measured the following parameters and compare
them with those obtained by the results of Vivisimo. Depth of the hierarchy:
Maximum number of levels in the whole hierarchy and average number of levels
in the subtrees rooted at level-1 categories. This gives an idea of the number of
steps that the user may should perform to reach a page of interest, both in the
average and in the worst case. Width of the hierarchy: Maximum number and
average number of children of each category. This gives an idea of the number
of elements that the user should may scan when expands a category.

Coherence of Categories. Structural properties do not suffice to evaluate the
quality of a hierarchy. Each category should group documents sharing a common
topic and the label of the category should clearly reflect this topic. We define
simple but reasonable parameters to partially estimate the coherence and the
labeling correctness of a clusters hierarchy HG. Namely, for each category C, let
DC be the union of all documents in C and let LC be the set of words in the
label of C. Also, let WC be the number of occurrences of words of LC in DC , and
let W be the number of occurrences of words of LC in the documents contained
in the siblings of C plus C itself. The coherence percentage of C is defined as
coher(C) = 100WC

W . The coherence percentage of HG is defined as

coher(HG) =
∑

C∈HG
(coher(C) ∗ |DC |)/

∑
C∈HG

|DC |.

We also define the incoherence percentage of C as the percentage of documents
of C that do not contain words of LC . The incoherence percentage of HG is the
average of all cluster incoherence percentages.

For the experiments we used a set Q of 9 query strings. The strings in Q de-
fine (i) Ambiguous queries: Armstrong, Jaguar, Mandrake. (ii) Generic queries:

4 http://zico.diei.unipg.it/∼whatsonweb

114 E. Di Giacomo et al.

Health, Language, Machine. (iii) Specific queries: Mickey Mouse, Olympic Games,
Steven Spielberg.

All the experiments were performed on a PC Pentium IV, 2.7 GHz, and 512
MB RAM. Figure 2 shows the data about the depth and the width of the cluster
hierarchies computed by WhatsOnWeb against those computed by Vivisimo. For
every query in Q, WhatsOnWeb analyzed the same number of snippets considered
by Vivisimo, which usually ranges in the interval [160, 250]. As shown in the
figure, the structure of the hierarchies constructed by the two systems are very
similar in many cases.

Concerning efficiency, Figure 2 also shows the CPU time spent by WhatsOnWeb
on each query: beside the overall time required by the whole computation, we also
reported the times required by the two main phases of our technique: construct
the snippet graph and compute the labeled clusters hierarchy. The number of the
processed snippets (pages) is also shown. The results show that our clustering
algorithm is quite fast in practice.

�������	�
�� �� �� �� �� ����� ��
�������� ����	����
��� ��	��
��������	 4 5 2,13 2,38 30 40 3,93 3,62 222 2,12 3,09 5,21

�	��� 4 5 2,18 2,53 22 32 3,71 3,26 187 1,88 1,84 3,72
������� 4 5 2,13 2,39 24 47 4,35 3,71 219 2,25 6,96 9,21
������ 4 5 2,25 2,56 16 39 3,87 3,22 181 1,97 7,36 9,32
���	��	� 4 5 2,17 2,64 18 44 4,24 3,30 169 1,78 4,32 6,10
������ 4 5 2,12 2,29 25 45 4,71 3,61 235 2,35 2,87 5,22
���������� 4 5 2,06 2,38 34 47 4,78 3,52 240 2,60 4,57 7,17
������������� 4 5 2,14 2,51 29 41 3,98 3,58 228 2,50 9,26 11,77
���������������	 4 5 2,06 2,69 31 36 5,00 3,26 211 2,24 4,39 6,63

�������	�
������ �������� �
������� ���������

Fig. 2. Structure of the cluster hierarchy (WW= WhatsOnWeb, VS=ViviSimo) and on the
CPU time of WhatsonWeb

(a) (b)

Fig. 3. (a) Coherence and (b) Incoherence percentage for each query string

Figure 3 shows some results about the coherence and the incoherence percent-
ages of the hierarchies computed by WhatsOnWeb. Namely, WhatsOnWeb ranks the
category in the computed hierarchy using a cluster relevance score that combines
the Google rank for the documents of a cluster with the number of documents
in the cluster itself. The user is typically interested in the top categories of the

A Topology-Driven Approach to the Design of Web Meta-search 115

hierarchy. Thus we measured the cluster coherence/incoherence of the first five
categories that WhatsOnWeb presents to the user. Also, we measured the cluster
coherence/incoherence of the whole hierarchy. The experiments put in evidence
two main aspects: (i) The first five categories usually have a cluster coherence
that is significantly greater than for the rest of the categories (it rises up to 60%
in the average), especially for the ambiguous queries. This result is positive if
we consider that the union of the first five categories typically groups more than
50% of the documents. (ii) The cluster incoherence is lower than 10% for most
of the instances, although for some queries it increases up to 16-18%.

References

1. Y. Asano, H. Imai, M. Toyoda, and M. Kitsuregawa. Finding neighbor communities
in the web using inter-site graph. In DEXA’03, pages 558–568, 2003.

2. M. Brinkmeier. Communities in graphs. In IICS’03, volume 2877 of LNCS, pages
20–35, 2003.

3. G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal and
quasi-upward drawings with vertices of prescribed sizes. In GD ’99, volume 1731
of LNCS., pages 297–310, 1999.

4. E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. A topology-driven approach
to the design of web meta-search clustering engines. Technical Report RT-004-04,
Dip. Ing. Elettr. e dell’Informaz., Univ. Perugia, 2004.

5. Q. Feng, R. F. Choen, and P. Eades. How to draw a planar clustered graph. In
COCOON’95, volume 959 of LNCS, pages 21–31, 1995.

6. P. Ferragina and A. Gulli. The anatomy of a clustering engine for web-page snippet.
In ICDM’04, 2004.

7. G. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communities.
In ACM SIGKDD, pages 150–160, 2000.

8. B. Fung, K. Wang, and M. Ester. Large hierarchical document clustering using
frequent itemsets. In SDM, 2003.

9. G. Greco, S. Greco, and E. Zumpano. Web communities: Models and algorithms.
World Wide Web, 7:58–82, 2004.

10. E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity.
Information Processing Letters, 76:175–181, 2000.

11. N. Imafuji and M. Kitsuregawa. Finding a web community by maximum flow
algorithm with hits score based capacity. In DASFAA’03, pages 101–106, 2003.

12. D. W. Matula. k-components, clusters, and slicing in graphs. SIAM J. Appl. Math.,
22(3):459–480, 1972.

13. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Phys. Rev. E 69, 2004.

14. S. Osinski, J. Stefanowski, and D. Weiss. Lingo: Search results clustering algorithm
based on singular value decomposition. IIS 2004, pages 359–368, 2004.

15. R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. on Comput., 16(3):421–444, 1987.

16. Y. Wang and M. Kitsuregawa. Link based clustering of web search results. In
WAIM 2001, volume 2118 of LNCS, pages 225–236, 2001.

17. D. Weiss and J. Stefanowski. Web search results clustering in polish: Experimental
evaluation of carrot. In IIS 2003, 2003.

116 E. Di Giacomo et al.

18. F. Wu and B. A. Huberman. Finding communities in linear time: A physics ap-
proach. Eur. Phys. J. B 38, pages 331–338, 2004.

19. O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration.
In SIGIR ’98, pages 46–54, 1998.

20. O. Zamir and O. Etzioni. Grouper: a dynamic clustering interface to web search
results. Computer Networks, 31(11-16):1361–1374, 1999.

21. D. Zhang and Y. Dong. Semantic, hierachical, online clustering of web search
results. In WIDM’01, 2001.

Computing Upward Planar Drawings Using
Switch-Regularity Heuristics�

Walter Didimo

Dipartimento di Ingegneria Elettronica e dell’Informazione,
Università degli Studi di Perugia, Via G. Duranti,

06125 Perugia, Italy
Università di Perugia
didimo@diei.unipg.it

Abstract. Let G be an upward planar embedded digraph. The classical
approach used to compute an upward drawing of G consists of two steps:
(i) A planar st-digraph including G is constructed adding a suitable set
of dummy edges; (ii) A polyline drawing of the st-digraph is computed
using standard techniques, and dummy edges are then removed. For com-
putational reasons, the number of dummy edges added in the first step
should be kept as small as possible. However, as far as we know, there
is only one algorithm known in the literature to compute an st-digraph
including an upward planar embedded digraph. In this paper we describe
an alternative heuristic, which is based on the concept of switch-regularity
introduced by Di Battista and Liotta (1998). We experimentally prove
that the new heuristic significantly reduces the number of dummy edges
added to determine the including st-digraph. For digraphs with low den-
sity, such a reduction has a positive impact on the quality of the final
drawing and on the overall running time required by the drawing process.

1 Introduction

The upward drawing convention is commonly used to display acyclic digraphs
representing hierarchical structures, like for example PERT diagrams and class
inheritance diagrams. In an upward drawing each vertex is represented as a
point of the plane and all edges are drawn as curves monotonically increasing in a
common direction (for example the vertical one). An upward planar drawing is an
upward drawing with no edge crossing (see, e.g. Figure 1(c)). It is known that not
all planar digraphs admit an upward planar drawing, and the upward planarity
testing problem is in general NP-complete [1]. Bertolazzi et. al [2] proved that
the upward planarity testing problem can be solved in polynomial time when the
planar embedding of the digraph is assigned. Namely, given a planar embedded
digraph G, they introduce the concept of upward planar embedding of G, which is
a labeled embedding that specifies the type of angles at source- and sink-vertices

� This work is partially supported by the MIUR Project ALINWEB.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 117–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

118 W. Didimo

inside each face of G; the label of an angle informs if that angle will be “large”
(greater than π) or “small” (less than π) in the final drawing. The authors prove
that an upward planar drawing of G exists if and only if there exists an upward
planar embedding of G with certain properties; such an upward embedding can
be computed in polynomial time if it exists. An algorithm is described in [2] that
computes a drawing of an upward planar embedded digraph G in two steps:
Step 1: Construct an including planar st-digraph of G adding a suitable set
of dummy edges; Step 2: Compute a polyline drawing of the st-digraph using
standard techniques (see e.g. [3, 4]), and then remove dummy edges.

It is important that the number of dummy edges added in Step 1 be kept
as small as possible. Indeed, dummy edges restrict the choices that can be per-
formed in Step 2 to determine a good layout of the digraph, and they also
influence the running time of Step 2. However, as far as we know, the augmen-
tation technique described in [2] is the only one existing in the literature.

In this paper we investigate a new approach for augmenting an upward planar
embedded digraph to an st-digraph. The main results of this paper are listed
below:

– We provide a new characterization for the class of switch-regular upward
embeddings (Section 2). This class has been introduced by Di Battista and
Liotta in [5]. Our characterization is similar to the one given in [6] for defining
turn-regular orthogonal representations.

– We use the above characterization to design a new polynomial-time algo-
rithm that computes an st-digraph including an upward planar embedded
digraph (Section 3).

– We experimentally prove that the new algorithm significantly reduces the
number of dummy edges added to determine the including st-digraph when
compared with the technique in [2]. This reduction dramatically reduces the
total edge length of the computed drawings for low-density digraphs and
has a positive impact on the overall running time of the drawing process
(Section 4).

2 Switch-Regular Upward Embeddings

2.1 Preliminaries

In this paper we concentrate on planar digraphs with a given planar embedding.
We use a notation that is slightly revised with respect to the one in [2, 5]. Let G
be an embedded planar digraph. An upward planar drawing Γ of G is a planar
drawing of G such that: (i) Γ preserves the embedding of G. (ii) All the edges
of G are drawn as curves monotonically increasing in the vertical direction. If G
admits an upward planar drawing, it is called an upward planar digraph.

A vertex of G is bimodal if its incident list can be partitioned into two (pos-
sibly empty) lists, one consisting of incoming edges and the other consisting of
outgoing edges. If all vertices of G are bimodal then G and its embedding are
called bimodal.

Computing Upward Planar Drawings Using Switch-Regularity Heuristics 119

Let f be a face of an embedded planar bimodal digraph G. Visit the boundary
of f counterclockwise. Let s = (e1, v, e2) be a triplet such that v is a vertex of
the boundary of f and e1, e2 are incident edges of v that are consecutive on the
boundary of f . Triplet s is called a switch of f if the direction of e1 is opposite
to the direction of e2 (note that e1 and e2 may coincide if G is not biconnected).
If e1 and e2 are both incoming, then s is a sink-switch of f . If they are both
outgoing, then s is a source-switch of f . Let 2nf be the number of switches of f .
The capacity of f is defined as cf = nf−1 if f is an internal face, and cf = nf +1
if f is the external face.

An assignment of the sources and sinks of G to its faces such that the following
properties hold is upward consistent : (i) A source (sink) is assigned to exactly
one of its incident faces. (ii) For each face f , the number of sources and sinks
assigned to f is equal to cf .

The following theorem gives a characterization of the class of upward planar
embedded digraphs.

Theorem 1. [2] Let G be an embedded planar bimodal digraph. G is upward
planar if and only if it admits an upward consistent assignment.

If G has an upward consistent assignment then the upward planar embedding
of G corresponding to that assignment is a labeled planar embedding of G, called
upward planar embedding of G, that has the following properties: (i) For each
face f the switches of f are labeled S or L. (ii) A source-switch or a sink-switch
of f is labeled L if it is assigned to f , otherwise it is labeled S.

If f is a face of an upward planar embedding, the circular list of labels of f
is denoted by σf . Also, Sσf

and Lσf
denote the number of S and L labels of f ,

respectively.

Property 1. [2] If f is a face of an upward planar embedding then Sσf
= Lσf

+2
if f is internal, and Sσf

= Lσf
− 2 if f is external.

Given an upward planar embedding of a graph G, it is possible to construct
an upward planar drawing of G such that every angle at a source- or a sink-
switch of f is greater than π when the switch is labeled L and it is less than
π when the switch is labeled S. Figures 1(a) and 1(c) show an upward planar
embedded digraph and a corresponding upward planar drawing.

An internal face f of an upward planar embedding is switch-regular if σf

does not contain two distinct maximal subsequences σ1 and σ2 of S-labels such
that Sσ1 > 1 and Sσ2 > 1. The external face f is switch-regular if σf does not
contain two consecutive S labels. An upward planar embedding is switch-regular
if all its faces are switch-regular. For example, the upward planar embedding of
Figure 1(a) is not switch-regular, since face f is not switch-regular. All the other
faces are switch-regular.

As shown in [2], given an upward planar embedding of a digraph G it is pos-
sible to construct a planar st-digraph including G by adding a new source s∗, a
new sink t∗, the edge (s∗, t∗), and a suitable set of dummy edges, called satu-
rating edges. More formally, the saturating edges are iteratively added applying
the following rules.

120 W. Didimo

f
L

L

L
LL

L

LS

S

S
S

S

S
S

S

S

S

S

S

1

2 3 4
5

6

7

8

9

10
11

12
L

S

L

(a)

t*

s*

5

9

7

8
10

11

12

6
3

1
2

4

(b)

5

9

7

8
10

11

12

6
3

1
2

4

(c)

Fig. 1. (a) A bimodal digraph G with a given upward planar embedding. (b) A drawing
of an st-digraph including G. The dashed edges represent a complete saturator of G.
(c) An upward planar drawing of G corresponding to the upward embedding

– If s = (e1, v, e2) and s′ = (e′
1, v

′, e′
2) are two source-switches of a face f

such that s is labeled S and s′ is labeled L (see Figure 2(a)), then we can
add a saturating edge e = (v, v′) splitting f into two faces f ′ and f ′′. Face
f ′ contains the new source-switch (e1, v, e) labeled S, and f ′′ contains the
new source-switch (e2, v, e) labeled S. Also, v′ does not belong to any switch
labeled L in f ′ and f ′′. We say that s saturates s′ and the new embedding
is still upward planar.

– If s = (e1, v, e2) and s′ = (e′
1, v

′, e′
2) are two sink-switches of a face f such

that s is labeled L and s′ is labeled S (see Figure 2(b)), then we can add
a saturating edge e = (v, v′) splitting f into two faces f ′ and f ′′. Face f ′

contains the new sink-switch (e, v′, e′
2) labeled S, and f ′′ contains the new

sink-switch (e′
1, v

′, e) with labeled S. Also, v does not belong to any switch
labeled L in f ′ and f ′′. We say that v′ saturates v and the new embedding
is still upward planar.

– Once all faces have been decomposed by using the two rules above, we can
add saturation edges that either connect a sink-switch labeled L of the ex-
ternal face to t∗, or s∗ to a source-switch labeled L of the external face. After
the insertion of these edges the embedding is still upward planar.

A saturator of a face f of G is a set of saturating edges that connect vertices
of f . Such a saturator is complete if no more saturating edges can be added to
decompose f . A maximal set of saturating edges for all faces of G is called a
complete saturator of G. Figure 1(b) shows a complete saturator of the upward
planar embedded digraph in Figure 1(a).

Theorem 2. [5] Let f be a face of an upward planar embedding of a digraph G.
Face f has a unique complete saturator if and only if f is switch-regular.

Theorem 2 implies that an upward planar embedded digraph has a unique
complete saturator if and only if it is switch-regular.

Computing Upward Planar Drawings Using Switch-Regularity Heuristics 121

1 2

12

f’

f’’

ve e

e’e’ v’

e

S S

(a)

1 2

2 1

f’’

f’

ve e

e’ e’v’
S

e

S

(b)

2 1 12

21

next

r f’

e’’ e’’ e’e’

ee
s

s

v’’

s

s’s’’

v’

v

(c)

Fig. 2. (a) A saturating edge between two source-switches. (b) A saturating edge be-
tween two sink-switches. (c) Illustration of the proof of Theorem 3

2.2 Characterizing Switch-Regular Upward Embeddings

In this section we give a new characterization of switch-regular upward embed-
dings; it is strongly related to the definition of turn-regular orthogonal represen-
tation given in [6].

Let G be an embedded bimodal planar digraph with a given upward planar
embedding. Let f be a face of G. A reflex switch of f is a switch of f that has
label L. A convex switch of f is a switch of f that has label S. Denote by Σf the
circular list of switches of f while visiting the boundary of f counterclockwise
(clearly, |Σf | = |σf |). For any switch s ∈ Σf , we define turn(s) = −1 if s is
reflex, and turn(s) = 1 if s is convex.

Let s′ = (e′
1, v, e′

2) and s′′ = (e′′
1 , v′′, e′′

2) be two switches in Σf . Denote by
Σf (s′, s′′) the subsequence of Σf from s′ (included) to s′′ (excluded). We define
the following function:

rotationf (s′, s′′) =
∑

s∈Σf (s′,s′′)

turn(s).

In particular, by Property 1, rotationf (s, s) = +2 for any switch s of an in-
ternal face f . If f is external, then rotationf (s, s) = −2. Also rotationf (s′, s′′) =
rotationf (s′, s) + rotationf (s, s′′), for each ordered sequence s′, s, s′′ ∈ Σf . Let
{s′, s′′} be an ordered pair of reflex switches of f . We say that {s′, s′′} is a pair
of kitty corners of f if one of the following holds:

– rotationf (s′, s′′) = +1.
– rotationf (s′, s′′) = −3 and f is external.

Note that by Property 1, if {s′, s′′} is a pair of kitty corners of a face f
(internal or external), then {s′′, s′} is a pair of kitty corners of f , too. Indeed,
if f is internal and rotationf (s′, s′′) = +1, then rotationf (s′′, s′) = +1. Also
if f is external and rotationf (s′, s′′) = +1, then rotationf (s′′, s′) = −3. In

122 W. Didimo

the upward planar embedding of Figure 1(a), denoted by s′ = ((3, 9), 9, (5, 9))
and s′′ = ((12, 11), 12, (12, 10)) in face f , we have rotationf (s′, s′′) = +1, and
therefore s′ and s′′ are kitty corners of f . The following theorem summarizes the
main result of this section.

Theorem 3. A face of an upward planar embedding is switch-regular if and only
if it has not kitty corners.

Proof. We prove the statement for an internal face f . A similar proof works
for the external face. Let f be a switch-regular face. Suppose by contradiction
that f contains a pair {s′, s′′} of kitty corners and consider the subsequence
Σf (s′, s′′). Since rotationf (s′, s′′) = +1, then in Σf (s′, s′′) the number of convex
switches is equal to the number of reflex switches plus one. Therefore, since s′

is a reflex switches, in Σf (s′, s′′) there is necessarily two consecutive switches
labeled S. Applying the same reasoning, there must be two consecutive labels S
in the subsequence Σf (s′′, s′). Since s′ and s′′ are labeled L, we have found two
maximal subsequences of S-labels both of size greater than one. Therefore, f is
not switch-regular, a contradiction.

Conversely, let f be a face that does not contain kitty corners. Suppose by
contradiction that f is not switch-regular. By Theorem 2 f has not a unique
saturator. This implies that in f there is a reflex switch s = (e1, v, e2) that
can be saturated by at least two distinct convex switches, say s′ = (e′

1, v
′, e′

2)
and s′′ = (e′′

1 , v′′, e′′
2). Assume, without loss of generality, that s, s′, and s′′ are

source-switches. Each of the two saturating edges (v, v′) and (v, v′′) would split
f , keeping the embedding upward planar. Refer to the notation of Figure 2(c):
Denote by snext the switch that follows s in Σf , and let f ′ be the face to the
right of the saturating edge (v, v′). Since the complete rotation of an internal face
is always 2, we have that rotationf ′(snext, s

′) = 2 − rotationf ′(s′, snext) = +1.
Also, since s is a reflex switch of f , we have that rotationf (s, s′) = 0. By a
similar reasoning applied on the face to the right of the saturating edge (v, v′′),
we have that rotationf (s, s′′) = 0, and hence rotationf (s′, s′′) = 0. This implies
that in the subsequence Σf (s′, s′′) there exists at least one reflex switch sr such
that rotationf (s, sr) = +1 (indeed s′ is labeled S, and the number of L labels
in Σf (s′, s′′) is equal to the number of S labels). Therefore, {s, sr} is a pair of
kitty corners, a contradiction.

3 A Switch-Regularity Heuristic

Let G be a planar bimodal digraph with a given upward planar embedding. A
linear-time algorithm is described in [2] that constructs an st-digraph including G
by computing a complete saturator of G. This algorithm recursively decomposes
every face f , searching on the boundary of f subsequences of three consecutive
switches s, s′, s′′ such that both s and s′ are labeled S, while s′′ is labeled L.
Each time such a sequence is found, the algorithm splits f into two faces by
adding a saturating edge connecting the vertices of s and s′′. When there are
no more sequences of labels SSL in a face, then the algorithm suitably connects

Computing Upward Planar Drawings Using Switch-Regularity Heuristics 123

the reflex switches of the external face with s∗ and t∗. In the following we call
SimpleSat the algorithm in [2].

v’

v

e

s

s’

(a)

5

9

10
11

12

6
3

1

4

14

15

16

17

19
18

2

713

8
20

(b)

Fig. 3. (a) A face having kitty corners s, s′ is split by edge e = (v, v′). (b) An upward
planar embedding augmented to a switch-regular one; dummy edges are dashed

We use the characterization of Theorem 3 to design a new heuristic for com-
puting a planar st-digraph including G. For each face f , we test if f is switch-
regular on not. If f is not switch-regular, we apply an O(deg(f)) procedure that
finds a pair {s, s′} of kitty corners of f , where deg(f) is the degree of f . Such a
procedure uses the same technique described in [6] for detecting a pair of kitty
corners in a face of an orthogonal representation. Once {s, s′} is detected, we
split f by adding to G a dummy edge connecting the vertices of s and s′ (see
Figure 3(a)). Observe that, after the insertion of this edge, the new embedding
is still an upward planar embedding. We recursively decompose all faces that
are not-switch regular by applying the above algorithm, so to make the upward
planar embedding switch-regular. In Figure 3(b) it is shown an upward planar
embedding that is augmented to a switch-regular one, by using the above strat-
egy. When the upward planar embedding becomes switch-regular, we apply the
SimpleSat algorithm so to add the edges that are still needed to construct an
st-digraph including G. Note that, since we apply algorithm SimpleSat on a
switch-regular upward embedding, the complete saturator determined by this
algorithm is uniquely defined. We call our heuristic SrSat. From the time com-
plexity view point, SrSat takes O(n2) time in the worst case, since there may
be an O(n) number of kitty corners, and the detection of each pair requires
O(n) time. In practice however, since SrSat adds less edges than SimpleSat,
the overall running time of the drawing algorithm is reduced (see Section 4).

4 Experimental Results

We implemented and experimented heuristics SimpleSat and SrSat on a large
test suite of graphs, in order to compare their performances. The test suite is

124 W. Didimo

composed by two subsets, Small-graphs and Large-graphs, of upward pla-
nar embedded digraphs. Subset Small-graphs consists of 800 graphs having
number of vertices in {10, 20, . . . , 100} and density (edge-to-vertex ratio) in
{1.2, 1.4, 1.6, 1.8}. Subset Large-graphs consists of 120 graphs having number
of vertices in {500, 600, . . . , 1500, 2000} and density ranging from 1.2 to 1.3.

All graphs have been randomly generated. Since we were interested in upward
planar embedded digraphs, the design of the generation algorithm was a difficult
task. We used two different approaches to generate the graphs for the two subsets.
Namely, each graph in subset Small-graphs was generated by the following
procedure: (i) Generate a connected (possibly non-planar) graph with a uniform
probability distribution; (ii) Compute a spanning tree of this graph by randomly
choosing the root vertex; (iii) Randomly add edges to the spanning tree until
the desired density value is reached: Each time we choose a new edge, this edges
is added only if the planarity of the graph is not violated otherwise the edge is
discarded; (iv) Once a planar embedded graph has been generated, an upward
orientation is assigned to the graph by applying the network-flow algorithm
described in [7].

��������	�
��
���������
��	����
�����

0

10

20

30

40

50

60

70

1 1,2 1,4 1,6 1,8 2

�������

Fig. 4. Percentage of non-switch regular faces with respect to the graph density (edge-
to-vertex ratio)

The above algorithm requires the application of a planarity testing algorithm
each time a new edge is chosen for possible insertion. Therefore, it does not allow
the generation of large graphs in a reasonable time. In order to generate graphs
for the subset Large-graphs we used a different and faster algorithm. First we
generate a planar embedded biconnected graph by the technique described in [8],
and then we still assign an orientation to the graph by the algorithm in [7]. Thus,
the graphs in this subset are biconnected.

All experiments were performed on a PC Pentium M, 1.6 Ghz, 512 MB
RAM, and Linux OS. We first measured the percentage of non-switch regular
faces of the input graphs. As already found in other similar experiments on
orthogonal representations [6], this percentage decreases exponentially with the
increasing of the graph density (see Figure 4). For graphs of density 1.2 we
have up to 60% of faces that are not switch-regular. Indeed, the performances of
algorithms SimpleSat and SrSat differ especially on low density graphs, while
the two algorithms perform quite similarly on high density graphs. For the above

Computing Upward Planar Drawings Using Switch-Regularity Heuristics 125

������
��
�����
��	��

0
10
20
30
40
50
60
70
80
90

10 20 30 40 50 60 70 80 90 100

������
��
��������

SrSat

SimpleSat

(a)

������
��
�����
��	��

0
200
400
600
800

1000
1200
1400
1600

500 600 700 800 900 1000 1100 1200 1300 1400 1500 2000

������
��
��������

SrSat

SimpleSat

(b)

Fig. 5. Number of dummy edges added by the two heuristics with respect to the number
of vertices: (a) Small graphs (10-100 vertices). (b) Large graphs (500-2000 vertices)

�����
��	�
���	��

0

500

1000

1500

2000

10 20 30 40 50 60 70 80 90 100

��	
��
��
�������

SrSat

SimpleSat

(a)

�����
��	�
���	��

0

50000

100000

150000

200000

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

20
00

��	
��
��
�������

SrSat

SimpleSat

(b)

Fig. 6. Total edge length of the drawing with respect to the number of vertices: (a)
Small graphs (10-100 vertices). (b) Large graphs (500-2000 vertices).

motivation, in the following we only discuss the results for graphs with low
density.

Figure 5 depicts the number of dummy edges added by the two algorithms.
Notice that, both for small and large graphs algorithm SrSat adds in the average
the 16% of edges less than algorithm SimpleSat.

The reduction of the number of dummy edges added by SrSat has a posi-
tive impact on the drawing readability. Namely, while the area of the drawings
computed by SrSat and SimpleSat is comparable in the average (we omit the
charts on the area for space reasons), applying SrSat instead of SimpleSat dra-
matically reduces the total edge length of the final drawings (see Figure 6); for
large graphs the improvement is about 25% in the average, and it increases up
to 36% for graphs with 2000 vertices.

Finally, although the asintotically cost of SrSat is O(n2), this heuristic causes
a reduction of the overall running time in practice, due to the “small” number
of dummy edges added with respect to SimpleSat. In fact, on the st-digraphs
computed by the two heuristics we applied the same algorithm to determine a

126 W. Didimo

polyline drawing of the digraph (see. e.g. [3]). This algorithm first computes a
visibility representation of the st-digraph, then applies on it an O(n2 log n) min-
cost-flow technique to minimize the total edge length, and finally constructs a
polyline drawing from the compact visibility representation. We measured the
overall CPU time spent for computing upward planar drawings using one of
the two different saturating heuristics and the compaction algorithm described
above. While for small graphs the choice of the saturating heuristic has no rel-
evant effect on the CPU time (which is always significantly less than 1 second),
applying SrSat against SimpleSat on large graphs reduces the overall CPU time
of about 8% in the average.

5 Open Problems

One of the open problems that naturally rises from the results of this paper
is the design of novel saturating heuristics based on switch-regularity that also
improve the area of the drawings.

References

1. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. on Comput. 31 (2001) 601–625

2. Bertolazzi, P., Battista, G.D., Liotta, G., Mannino, C.: Upward drawings of tricon-
nected digraphs. Algorithmica 6 (1994) 476–497

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall,
Upper Saddle River, NJ (1999)

4. Kaufmann, M., Wagner, D.: Drawing Graphs. Springer Verlag (2001)
5. Di Battista, G., Liotta, G.: Upward planarity checking: “faces are more than poly-

gon”. In: Graph Drawing (Proc. GD ’98). Volume 1547 of Lecture Notes Comput.
Sci. (1998) 72–86

6. Bridgeman, S., Di Battista, G., Didimo, W., Liotta, G., Tamassia, R., Vismara, L.:
Turn-regularity and optimal area drawings of orthogonal representations. Compu-
tational Geometry: Theory and Applications 16 (2000) 53–93

7. Didimo, W., Pizzonia, M.: Upward embeddings and orientations of undirected pla-
nar graphs. Journal of Graph Algorithms and Applications 7 (2003) 221–241

8. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with
the minimum number of bends. IEEE Trans. on Computers 49 (2000) 826–840

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 127 – 136, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Serial and Parallel Multilevel Graph Partitioning Using
Fixed Centers

Kayhan Erciye 1,2, Ali Alp3, and Geoffrey Marshall1

1 California State University San Marcos
333 S.Twin Oaks Valley Rd., San Marcos, CA 92096, U.S.A.
kerciyes@csusm.edu, marsh021@csusm.edu

2 zmir Institute of Technology, Urla, zmir, TR-35340, Turkey
3 Ege University International Computer Institute,

Bornova, zmir, TR-35100, Turkey
alpali@bornova.ege.edu.tr

Abstract. We present new serial and parallel algorithms for multilevel graph
partitioning. Our algorithm has coarsening, partitioning and uncoarsening
phases like other multilevel partitioning methods. However, we choose fixed
nodes which are at least a specified distance away from each other and coarsen
them with their neighbor nodes in the coarsening phase using various heuristics.
Using this algorithm, it is possible to obtain theoretically and experimentally
much more balanced partitions with substantially decreased total edge costs be-
tween the partitions than other algorithms. We also developed a parallel method
for the fixed centered partitioning algorithm. It is shown that parallel fixed cen-
tered partitioning obtains significant speedups compared to the serial case. …

1 Introduction

The aim of a graph partitioning algorithm is to provide partitions such that the number
of vertices in each partition is averaged and the number of edge-cuts between the
partitions is minimum with a total minimum cost. Graph partitioning finds applica-
tions in many areas including parallel scientific computing, task scheduling, VLSI
design ana operation research. One important area of research is on searching algo-
rithms that find good partitions of irregular graphs to map computational meshes to
the high performance parallel computer processors for load balancing such that
amount of computation for each processor is roughly equal with minimum communi-
cation among them. Solution of sparse linear systems where the graph representing
the coefficient matrix is partitioned for load balancing among processors is one area
that research is directed [1][2]. Recently, graph partitioning algorithms are used in
mobile ad-hoc networks to form clusters for dynamic routing purposes [3][4]. In
multi-constraint approach [5], each vertex is assigned a vector of k weights that
represent the work associated with that vertex in each of the k computational phases.
The aim is to partition the graph so that each of the k weights is balanced as well as
the sum of edge weights are minimized. In the related multi-objective model [6], the
partition tries to minimize several cost functions at the same time. Each edge is given
a vector of j weights where different cost functions are an element of this vector. The

128 K. Erciye , A. Alp, and G. Marshall

partitioning then tries to balance vertex weights by minimizing the cost functions. In
skewed partitioning [7], each vertex can have k preference values showing its ten-
dency to be in each one of k sets which is taken into consideration by the partitioning
algorithm. Partition refinement is an important step to improve partition quality. Ker-
nighan and Lin (KL) [8] provided a greedy method to swap a subset of vertices
among partitions to reduce edge connectivity further. During each step of KL algo-
rithm, a pair of vertices, one from each partition are selected and swapped to give a
reduced total edge weight among the partitions if possible. Multilevel graph partition-
ing is a comparatively new paradigm for graph partitioning and consists of coarsen-
ing, initial partitioning and refinement steps [9][10]. In the coarsening phase, a set of
vertices is selected and are collapsed to form a coarser graph. This step is performed
sufficient times to get a simple graph which can be divided into the required partitions
by a suitable algorithm. The obtained partitions are projected back by uncoarsening
and refinement by algorithms such as KL along this process. Chaco[11], METIS[12]
and SCOTCH[13] are popular multilevel partitioning tools used in diverse fields.

In this study, we propose new serial and parallel multilevel algorithms for graph
partitioning. We compare these methods with the multilevel graph partitioning
method of [10]. In Section 2, background including the multilevel graph partitioning
method is reviewed. Section 3 describes our serial graph partitioning algorithm which
is called Fixed Centered Partitioning (FCP). Parallel implementation of the FCP
algorithm on a cluster of workstations is given in Section 4. Finally, experimental
results obtained so far are presented and comparison of the algorithm with other algo-
rithms are outlined in Section 5 and the conclusions are given in Section 6.

2 Background

The multilevel graph partitioning model has proven to be very robust, general and
effective. The idea is simply approximation of a large graph by a sequence of smaller
and smaller graphs after which the smallest graph can be partitioned into p partitions
by a suitable algorithm.This partition is then brought back to the original graph by
refinements. Consider a weighted graph G0=(V0,E0) with weights both on vertices and
edges. A multilevel graph partitioning algorithm consists of the following phases.

Coarsening Phase : In the coarsening phase, the graph G0 is transformed into a se-
quence of smaller graphs G1, G2 ….. , Gm such that |V0| > |V1| > |V2| > · · · > |Vm|. In
most coarsening schemes, a set of vertices of Gi is combined to form a single vertex
of the next level coarser graph Gi+1. Let V={vi} be the set of vertices of Gi combined
to form vertex v of Gi+1. The weight of vertex v is set equal to the sum of the weights
of the vertices in V={vi}. Also, in order to preserve the connectivity information in the
coarser graph, the edges of v are the union of the edges of the vertices in vi. The
maximal matching of the graph is a set of edges such that there is not a pair adjacent
on the same vertex. Various approaches to find maximal matching exist. The heavy
edge matching (HEM) computes the matching Mi such that the weight of the edges in
Mi is high. The vertices are visited in random order, but the collapsing is performed
with the vertex that has the heaviest weight edge with the chosen vertex. In Random
Matching (RM), vertices are visited in random order and an adjacent vertex is chosen

 Serial and Parallel Multilevel Graph Partitioning Using Fixed Centers 129

in random order as well [10]. During the successive coarsening phases, the weight of
vertices and edges increase.

Partitioning Phase : The second phase of the multilevel algorithm computes a high-
quality partition Pm of the coarse graph Gm=(Vm, Em) by a suitable algorithm such that
each partition contains roughly equal vertex weights and the sum of the weights of the
edge cuts between the partitions is minimum.

Uncoarsening/Refinement Phase : During this phase, the partition Pm of the coarser
graph Gm is projected back to the original graph, by going through G m-1, Gm-2,…, G1.
Since each vertex of Gi+1 contains a distinct subset of vertices of G m-1, obtaining Pi

from Pi+1 is done by simply assigning the set of vertices collapsed in G i+1 to the par-
tition Pi+1[v]. Algorithms such as KL are usually used to improve partition quality.

3 Serial Fixed Centered Partitioning

The method we propose has coarsening, partitioning and uncoarsening phases as in
the other multilevel partitioning methods. We however choose fixed initial nodes
called centers and collapse the vertices around these centers which must have at least
a fixed distance to the other selected center nodes. The FCP algorithm is described in
Section 3.1, the formal analysis of the algorithm is stated in Section 3.2. and an
example partition is given in Section 3.3.

3.1 Serial FCP Algorithm

The Serial FCP algorithm can be formally described as in Fig.1. Inputs to the algo-
rithm are the initial graph G0, number of partitions required and the two heuristics,
HC and HM. Since we have fixed centers that do not change as the graph gets coars-
ened, a way to allocate these centers initially is needed. The first approach we em-
ployed is to run Breadth-First-Search (BFS) algorithm for all the nodes in the graph
and find p center nodes which have the maximum distance between them. BFS, how-
ever, is time consuming as it has a runtime of O(n3). Secondly, we may choose the
centers randomly with the constraint that each center has at least some predetermined
distance among them. The third approach chooses the centers randomly with no con-
straints. The minimum distance heuristic h1 between any two centers may be associ-
ated to the diameter value of the graph and the number of partitions by h1 = 2d/p
where d is the diameter of the graph and p is the number of partitions required. The
possible heuristics used to locate the centers initially could be summarized as follows:

• HC1 : Apply Breadth-First-Search (BFS) to G0 and find p centers that are
2d/p distance from each other

• HC2 : Choose centers randomly with the condition that they are at least 2d/p
distance from each other

• HC3 : Choose the centers at random with no constraints

Once the centers are chosen, FCP proceeds by collapsing a neighbor vertex at each
iteration to the fixed centers as shown in Fig.1 using a second heuristic, HM. Two
possible values for HM are the Heaviest Edge Neighbor (HEN) or Random Neighbor
(RN). Based on the heuristic chosen, the Collapse function performs the collapse
operation of a marked neighbor node with the center which simply merges the marked

130 K. Erciye , A. Alp, and G. Marshall

vertex to the center by adding its weight to the center, removing the edge between
them and inserting any previously coexisting edges between them by adding the
weights of the edges and representing them as a single edge with this weight.

Procedure Serial_FCP

 Input : G0 : initial graph
 p : number of partitions
 HC : heuristic to allocate initial centers
 HM : heuristic to mark neighbor nodes
1. Locate_centers(G0, HC);
2. for i=1 to |_n/p_| do
3. for each center c do
4. Collapse(Gi, c, HM);

Fig. 1. Serial FCP Algorithm

3.2 Analysis of Serial FCP

The time complexity and the quality of the partitions of the Serial FCP can be stated
in the following theorems:

Theorem 1: FCP performs partitioning of G(V,E) in O(|_n/p_|) steps where |V| = n
and p is the number of partitions required. The time complexity of the total collapsing
of FCP is O(n).

Proof : FCP simply collapses p nodes with its heaviest edges at each step resulting in
|_n/p_| steps. Since there are p collapsing at each step, total time complexity is O(n).

Corollary 1: FCP performs partitioning of G(V,E) such that the final partitions have
O(|_n/p_|+1) vertices.

Proof: The FCP collapses one node to each partition and the total number of steps is
O(|_n/p_|) by Theorem 1.In the last step, there will be O(p MOD n) nodes to collapse
which means that the final partitions will have a maximum of n/p+1 nodes.

3.3 FCP Examples

Let us illustrate RM, HEM and FCP by the example shown in Fig. 1 where (a) is RM,
(b) is HEM, (c) is FCP and heavy lines are used to show matchings. The initial graphs
and outputs of RM and HEM are reproduced from [14]. The output graphs are formed
after (5) collapses for RM and HEM but (6) for FCP after two steps. For this par-
ticular example, we see that FCP performs much better with a total edge cost of 16
compared to RM (30) and HEM (24). We also get 3 vertices per partition with respect
to 2 vertices in RM and HEM. If three partitions were required, we would have
stopped for FCP but continue with matching for CM and HEM. Moreover, FCP does
not have a matching phase, therefore it has much better runtimes than RM and HEM.

 Serial and Parallel Multilevel Graph Partitioning Using Fixed Centers 131

Fig. 2. Comparison of RM (a), HEM (b) and FCP (c) in an arbitrary network

4 Parallel Fixed Centered Partitioning

The proposed parallelization of FCP consists of three phases. In the first phase, the
determination of the diameter of the network is done in parallel. The coordinatorsends
the adjacency list of the graph to individual workers and each worker then estimates its
local diameter of the graph by performing BFS on its local partition. The coordinator
gathers all of the local diameters and estimates the total diameter. It then locates the
centers based on this diameter and sends the identities of the centers to each processor.

Process Parallel_FC_Coordinator

 Input : G0 : initial graph

 p : number of partitions
 HC : heuristic to allocate initial centers
 HM : heuristic to mark neighbor nodes

1. /* Locate Centers */
2. Send adjacency list and their identities to slaves
3. Receive local diameters from all slaves
4. estimate diameter of the graph and determine center nodes
5. Send center nodes to the slaves.
6. /* Wait for local collapses */
7. forall workers
8. Receive the collapsed nodes from the worker
9. while there are nodes to be collapsed /* Check Overlaps */
10. Receive node identities from slaves
11. Send COLLAPSED or NOT_COLLAPSED to workers
12. mark NOT_COLLAPSED nodes as collapsed

Fig. 3. Coordinator pseudocode for Parallel FCP

132 K. Erciye , A. Alp, and G. Marshall

In the second phase, each processor collapses the graph around its designated center
independently until a predetermined h2 times such that no overlap would occur. The
heuristic h2 used is set as d/p2 for the implementation. In the third phase, each proces-
sor attempts to collapse possibly overlapping regions with others. Therefore, every
time a number of nodes are to be collapsed, acknowledegment from the coordinator is
searched to check that these nodes have not been collapsed before. The coordinator
and worker pseudocodes are shown in in Fig. 3 and Fig. 4.

Fig. 4. Worker Pseudocode for Parallel FCP

5 Results

5.1 Results for Serial Centered Node Matching

We implemented the graph partitioning using HEM, RM and FCP (alternatively
called Centered Matching - CM) for various randomly created matrix sizes (128*128,
256*256, 512*512, 1024*1024, 2048*2048). The graphs represented by the matrices
are partitioned on Ultra 5 Sun Sparc servers which run Solaris7 as operating system
and runtimes of partitioning algorithms are compared. Center nodes in FCP are found
by two different heuristics as HC1 and HC2. by running the BFS algorithm for all
nodes or randomly choosing and checking for a distance between as described in
Section 3.1. As shown in Fig. 5, the first FCP (CM with random center) method is the
fastest as expected since FCP does not have a matching phase. The second FCP
method (CM with BFS) is the slowest because BFS is executed on all nodes of the
graph to find center nodes. In Fig. 6, the total edge costs between the partitions are
plotted for FCP (with HC2 and HC3) and HEM and RM. It may be seen that both
FCP methods have a significant decreased total edge costs between the partitions.

Process Parallel_FC_Worker

 Input : G0 : initial graph
 p : number of partitions
 HM : heuristic to mark neighbor nodes

1. Determine Local Diameter;
2. Receive adjacency list and my_index;
3. Find the local diameter;
4. Send local diameter to coordinator;
5. Receive diameter and my_center from master
6. h2 = d/p2 /* Local Collapses */
7. Collapse nodes until distance h2 from my_center;
8. Send the identities of the collapsed nodes to the master;
9. /* Overlapping Collapses */
10. while any uncollapsed neighbor of mycenter exists
11. Send neighbor to master for checking;
12. Receive check from master;
13. if (check== neighbor not collapsed)
14. Collapse neighbor and mark it as collapsed;

 Serial and Parallel Multilevel Graph Partitioning Using Fixed Centers 133

r u n t i m e s o f G P m e th o d s

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0

128* 1
28

256*2
56

512*5
12

1024 *1
024

2048 *2
048

m a t r i x s i z e

ti
m

e(
se

c)

H E M

R M

C M r a n d o m c e n t e r

C M b f s a ll n o d e s

Fig. 5. Execution Times for theGraph partitioning methods

Average Edge Cost Comparison

0

1000

2000

3000

4000

5000

6000

2000 4000 6000 8000 10000

Number of Nodes

T
ot

al
 W

ei
gh

t o
f C

ro
ss

in
g

E
dg

es

FCP(HC2)

FCP(HC3)

HEM

RM

Fig. 6. Edge Cost Comparison of the Four Algorithms

Partition Quality

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4
Partitions

N
od

es

HEM

RM

FCP

Fig. 7. Number of nodes in each part for all graph partitioning methods(2048*2048 matrix)

134 K. Erciye , A. Alp, and G. Marshall

Fig. 7 depicts the number of nodes in each partition with FCP (HC2), HEM and
RM. As shown, FCP generates much more balanced partitions than other methods.
This is because of the operation principle of FCP where the centers are visited in
sequence as stated in Corollary 1.

5.2 Results for Parallel Centered Node Matching

We implemented the parallel FCP method on a network of workstations running Paral-
lel Virtual Machine (PVM) v3.4.4. The processors find their local diameters and coarsen
their neighbor nodes around their local centers to partition the graph. A coordinator and
2,4,5,6 worker workstations are used in the same VLAN over a Gigabit Ethernet. All of
the servers are Ultra 5 Sun Sparc running Solaris 7. Workers communicate with the
coordinator using a point-to-point protocol. For various graph sizes, the computational
run times are recorded. Fig. 8 displays the results of the Parallel FCP for various number
of processors ranging from 1 to 6. It may be seen that after a threshold value of the
number of workers, the communication costs become dominant.

r u n t im e s fo r s e r ia l & p a r a lle l C M

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

32*3
2

64*6
4

128*1
28

256*2
56

512*5
12

1024 *1
024

2048 *2
048

2560 *2
560

3000 *3
000

m a t r ix s iz e

ti
m

e(
se

c)

T1

T2

T4

T5

T6

6 Conclusions

6 Conclusions

We proposed a new graph partitioning algorithm called FCP and compared this
method with other methods such as HEM and RM. FCP provides more favorable
partitions than the other methods theoretically and experimentally. However, FCP
needs to assign some nodes in the graph as center nodes which have at least a certain
distance to each others. The experimental results confirmed the theoretical FCP prop-
erties in terms of the runtime, total edge cost between the partitions and the partition
quality. FCP using any heuristic performed much better than HEM and RM in terms
of total edge cost and partition quality. For the runtime, FCP with HC2 and HC3
resulted in lower times than HEM and RM but FCP with HC1 proved to be the slow-

Fig. 8. Comparison of serial and parallel runtimes of FCP. T1: serial runtime. Ti represents
the execution time with i workers

 Serial and Parallel Multilevel Graph Partitioning Using Fixed Centers 135

est as expected. FCP does not have a matching phase which results in a faster execu-
tion time and divides the graph into almost equal partitions as stated in Corollary 1.
We also developed a parallel version of FCP. In this case, the diameter of the graph is
estimated after each processor finds their local diameters and then the centers can be
found by the coordinator. After finding centers where each of is assigned to different
workers, each workstation continues collapsing the neighbor nodes of its center until
there are no uncollapsed nodes left by getting acknowledgement from the coordinator
after some predetermined value. The efficiency of the parallel algorithm rises for
larger graphs until a threshold value where the communication costs start to
dominate.

Our general conclusions can be summarized as follows. FCP provides improve-
ment over the other graph matching algorithms such as RM and HEM in three as-
pects. Firstly, it does not have a matching phase, therefore it is faster. Secondly, it
provides almost equal partitions with significantly lower total edge costs between the
partitions than the other methods and thirdly it is suitable for parallel processing as
each center collapses independently. One negative aspect of FCP is the initial marking
of the fixed centers and random allocation could be a solution in this case. Also, the
parallel algorithm employed requires a heuristic to be able to perform collapsing
without any supervision initially. We are looking into more efficient ways of finding
centers and performing FCP in parallel. Another interesting research direction would
be modifying the FCP to perform multi-constraint, multi-objective graph partitioning.
In this case, several cost functions would need to be minimized when choosing the
vertices to collapse.

References

1. Hendrickson, B. and Kolda, T., G. : Partitioning Rectangular and Structurally Nonsymmet-
ric Sparse Matrices for Parallel Processing, SIAM J. Sci. Comput. 21(6), (2000), 2048-
2072.

2. Turhal, B., Solution of Sparse Linear Systems on a Cluster of Workstations Using Graph
Partitioning Methods, Msc. Thesis, Ege University, Int. Computer Institute, (2001)

3. P. Krishna et al, A Cluster-based Approach for Routing in Dynamic Networks, ACM
SIGCOMM Computer Communication Review, 27 (2), (1997), 49 – 64.

4. Erciyes, K., Marshall, G. : A Cluster based Hierarchical Routing Protocol for Mobile Net-
works, LNCS, Springer-Verlag, ICCSA(3), (2004), 528-537.

5. Yuanzhu P. C., Liestman, A., L. : A Zonal Algorithm for Clustering Ad Hoc Networks,
Int. J. Foundations of Computer Science, 14(2), (2003), 305-322.

6. Schloegel, K, Karypis, G., Kumar, V. : A New algorithm for Multi-objective Graph Parti-
tioning, Tech. Report 99-003, University of Minnesota, Dept. of CS, (1999).

7. Hendrickson, B., Leland, R., Driessche, R., V. : Skewed Graph Partitioning, Proc. of 8th
SIAM Conf. Parallel Processing for Scientific Computing, SIAM (1997).

8. Kernighan, B., and Lin, S., An Effective Heuristic Procedure for Partitioning Graphs, The
Bell System Technical Journal, (1970), 291-308.

9. Hendrickson, B., Kolda, T., G. : Graph Partitioning Models for Parallel Computing, Paral-
lel Computing. 26, (2000), 1519-1534.

10. Karypis, G., Kumar, V. : A Fast and High Quality Multilevel Scheme for Partitioning Ir-
regular Graphs, Tech. Report 95-035, University of Minnesota, Dept. of CS, (1995).

136 K. Erciye , A. Alp, and G. Marshall

11. Hendrickson, B., Leland, R. : The Chaco User Guide, V. 2.0, Technical report SAND94-
2692, Sandia National Labs., (1994).

12. 12 .Karypis, G., Kumar, J. : METIS,1.5 : A Hypergraph Partitioning package. Tech. Re-
port, Univ. of Minnesota, Dept. of CS, (1998).

13. Pellegrini, F., Roman, J. : SCOTCH: A Software Package for Static Mapping by Dual Re-
cursive Bipartitioning of process and Architecture Graphs. HPCN-Europe, LNCS,
Springer-Verlag, 1067, (1996), 493-498.

14. Schloegel, K., Karypis, G., Kumar, V. : Graph Partitioning for High Performance Scien-
tific Simulations, Tech. Report 00-018, University of Minnesota, Dept. of CS, (2000).

Two-Layer Planarization:
Improving on Parameterized Algorithmics

Henning Fernau

Universität Tübingen, WSI für Informatik, Sand 13,
72076 Tübingen, Germany

The University of Newcastle, School of Electr. Eng. and Computer Science,
University Drive, Callaghan, NSW 2308, Australia

fernau@informatik.uni-tuebingen.de

Abstract. A bipartite graph is biplanar if the vertices can be placed on
two parallel lines in the plane such that there are no edge crossings when
edges are drawn as straight-line segments. We study two problems:

– 2-Layer Planarization: can k edges be deleted from a given graph
G so that the remaining graph is biplanar?

– 1-Layer Planarization: same question, but the order of the ver-
tices on one layer is fixed.

Improving on earlier works of Dujmović et al. [4], we solve the 2-Layer
Planarization problem in O(k2 · 5.1926k + |G|) time and the 1-Layer
Planarization problem in O(k3 · 2.5616k + |G|2) time. Moreover, we
derive a small problem kernel for 1-Layer Planarization.

1 Introduction

In a 2-layer drawing of a bipartite graph G = (A, B; E), the vertices in A are
positioned on a line in the plane, which is parallel to another line containing the
vertices in B, and the edges are drawn as straight line-segments. Such drawings
have various applications, see [4]. A biplanar graph is a bipartite graph that
admits a 2-layer drawing with no edge crossings; we call such a drawing a biplanar
drawing. It has been argued that 2-layer drawings in which all the crossings occur
in a few edges are more readable than drawings with fewer total crossings [7]—
which gives the crossing minimization problem(s) [5].

This naturally leads to the definition of the 2-Layer Planarization prob-
lem (2-LP): given a graph G (not necessarily bipartite), and an integer k called
parameter, can G be made biplanar by deleting at most k edges? Two-layer
drawings are of fundamental importance in the “Sugiyama” approach to multi-
layer graph drawing [10]. This method involves (repeatedly) solving the 1-Layer
Planarization problem (1-LP).

Fixed Parameter Tractability. We develop improved algorithms for 2-LP
and for 1-LP that are exponential in the parameter k. This has the following
justification: when the maximum number k of allowed edge deletions is small, an
algorithm for 1- or 2-LP whose running time is exponential in k but polynomial
in the size of the graph may be useful. We expect the parameter k to be small in

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 137–146, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 H. Fernau

practice. Instances of the 1- and 2-LP for dense graphs are of little interest from
a practical point of view, as the resulting drawing will be unreadable anyway.

This analysis hence fits into the framework of parameterized algorithmics. A
parameterized problem with input size n and parameter size k is fixed parameter
tractable, or in the class FPT , if there is an algorithm to solve the problem in
f(k) · nα time, for some function f and constant α (independent of k).

Our Results. In this paper, we apply so-called kernelization and search tree
methods to obtain algorithms for the 1- and 2-LP problems, this way improving
earlier results [4] with exponential bases of 3 and 6, respectively. This leads to
an O(k2 · 5.1926k + |G|) time algorithm for 2-LP in a graph G. We present a
similar second algorithm to solve the 1-LP problem in O(k3 · 2.5616k + |G|2)
time. To this end, we draw connections to Hitting Set problems. The top-down
analysis technique presented in [6] is applied to obtain the claimed running times
in the analysis of the search tree algorithms. Detailed proofs can be found in
http://eccc.uni-trier.de/eccc-reports/2004/TR04-078/index.html.

2 Preliminaries

In this section we introduce notation, recall a characterization of biplanar graphs
and formalize the problem statements. All the mentioned results are from [4].

In this paper each graph G = (V, E) is simple and undirected. The subgraph
of G induced by a subset E′ of edges is denoted by G[E′]. A vertex with degree
one is a leaf. If vw is the edge incident to a leaf w, then we say w is a leaf at v
and vw is a leaf-edge at v. The non-leaf degree of a vertex v in graph G is the
number of non-leaf edges at v in G, and is denoted by deg′

G(v).
A graph is a caterpillar if deleting all the leaves produces a (possibly empty)

path. This path is the spine of the caterpillar. A 2-claw is a graph consisting
of one degree-3 vertex, the center, which is adjacent to three degree-2 vertices,
each of which is adjacent to the center and one leaf. A graph consisting of a
cycle and possibly some leaf-edges attached to the cycle is a wreath. Notice that
a connected graph that does not have a vertex v with deg′(v) ≥ 3 is either a
caterpillar or a wreath.

To prove their kernelization result for 2-LP, Dujmović et al. introduced the
following potential function. For a graph G = (V, E), define

∀v ∈ V, ΦG(v) = max{deg′
G(v)− 2, 0}, and Φ(G) =

∑
v∈V

ΦG(v) .

Lemma 1. Φ(G) = 0 if and only if G is a collection of caterpillars and wreaths.

Biplanar graphs are easily characterized, and there is a simple linear-time
algorithm to recognize biplanar graphs, as the next lemma makes clear.

Lemma 2. Let G be a graph. The following assertions are equivalent: (a) G is
biplanar. (b) G is a forest of caterpillars. (c) G is acyclic and contains no 2-claw
as a subgraph. (d) G is acyclic and Φ(G) = 0 (with Lemma 1).

Two-Layer Planarization: Improving on Parameterized Algorithmics 139

Lemma 2 implies that any biplanarization algorithm must destroy all cycles
and 2-claws. The next lemma gives a condition for this situation.

Lemma 3. If there exists a vertex v in a graph G such that deg′
G(v) ≥ 3, then

G contains a 2-claw or a 3- or 4-cycle containing v.

A set T of edges of a graph G is called a biplanarizing set if G\T is biplanar.
The bipartite planarization number of a graph G, denoted by bpr(G), is the size
of a minimum biplanarizing set for G. The 2-LP problem is: given a graph G
and an integer k, is bpr(G) ≤ k? For a given bipartite graph G = (A, B; E) and
permutation π of A, the 1-layer biplanarization number of G and π, denoted
bpr(G, π), is the minimum number of edges in G whose deletion produces a
graph that admits a biplanar drawing with π as the ordering of the vertices
in A. The 1-LP problem asks if bpr(G, π) ≤ k.

Lemma 4. For graphs G with Φ(G) = 0, a minimum biplanarizing set of G
consists of one cycle edge from each component wreath.

Lemma 5. For every graph G, bpr(G) ≥ 1
2Φ(G).

3 2-Layer Planarization: Bounded Search Tree

The basic approaches for producing FPT algorithms are kernelization and
bounded search trees [2]. Based on the preceding lemmas, Dujmović et al. showed:

Theorem 1. Given a graph G and integer k, there is an algorithm that deter-
mines if bpr(G) ≤ k in O(k · 6k + |G|) time.

That algorithm consists of two parts: a kernelization algorithm and a subse-
quent search tree algorithm 2-Layer Bounded Search Tree. The latter algorithm
basically looks for a vertex v with deg′(v) ≥ 3: if found at most 6 recursive
branches are triggered to destroy the forbidden structures described in Lemma 3.
After branching, a graph G with Φ(G) = 0 remains, solvable with Lemma 4.

Can we further improve on the running time of the search tree algorithm?
Firstly, observe that whenever deg′

G′(v) ≥ � for any G′ obtained from G by edge
deletion, then already deg′

G(v) ≥ �. This means that we can modify the sketched
algorithm by collecting all vertices of non-leaf degree at least three and, based
on this, all forbidden structures F , i.e., 2-claws, 3-cycles, or 4-cycles, according
to Lemma 3 (which then might interact). For reasons of improved algorithm
analysis, we also regard 5-cycles as forbidden structures. By re-interpreting the
edges of G as the vertices of a hypergraph H = (E, F), where the hyperedges
correspond to the forbidden structures, a 2-LP instance (G, k) is translated into
an instance (H, k) of 6-Hitting Set (6-HS).

If we delete all those edges in G that are elements in a hitting set as delivered
by a 6-HS algorithm, we arrive at a graph G′ which satisfies deg′

G′(v) < 3 for
all vertices v. Hence, Φ(G′) = 0, and Lemma 4 applies.

140 H. Fernau

Unfortunately, we cannot simply take some 6-HS algorithmas described in [8].
Why? The problem is that there may be minimal hitting sets C which are
“skipped” due to clever branching, since there exists another minimal solution C ′

with |C| ≥ |C ′|. However, if we translate back to the original 2-LP instance, we
still have to resolve the wreath components, and it might be that we “skipped”
the only solution that already upon solving the 6-HS instance was incidentally
also destroying enough wreaths. To be more specific, the analysis in [8] is based
on the validity of the vertex domination rule: A vertex x is dominated by a ver-
tex y if, whenever x belongs to some hyperedge e, then y belongs to e, as well.
Then, delete all occurrences of x, since taking y into the hitting set (instead
of x) is never worse. As explained, the subsequent wreath analysis destroys the
applicability of that rule.

If we insist on enumerating all minimal hitting sets no larger than the given k,
this problem can be circumvented, since we can do the wreath component anal-
ysis in the leaves of the search tree, but it would gain nothing in terms of time
complexity, since examples of hypergraphs having 6k minimal hitting sets of size
at most k can be easily found: just consider k disjoint hyperedges, each of size 6,
see [1].

However, our experience with analyzing Hitting Set problems by the help
of the so-called top-down approach as detailed in [6] gives the basic ideas for the
claimed improvements. The main purpose of the vertex domination rule is that
it guarantees the existent of vertices of “sufficiently” high degree in the Hitting
Set instance. Our aim is now to provide a more problem-specific analysis which
maintains exactly that property. To avoid confusion, in the following, we will
stay within the 2-LP formulation and will not translate back and forth between
the 2-LP instance and the corresponding 6-HS instance.

In order to maintain the structure of the original graph for the final wreath
analysis, we will mark edges that won’t be put into a solution during the recursive
branching process as virtual, but we won’t delete them. Hence, along the course
of the algorithm we present, there will be built a set M of edges that are marked
virtual. A forbidden structure f is a set of edges of the graph instance G = (V, E)
such that

– f describes a cycle of length up to five or a 2-claw, and
– f \M �= ∅.

c(f) = f \M is the core of f ; s(f) = |c(f)| is the size of f .
We will use the following reduction rules:

1. structure domination: A forbidden structure f is dominated by another struc-
ture f ′ if c(f ′) ⊂ c(f). Then, mark f as dominated.

2. small structures: If s(f) = 1, put the only non-virtual edge into the solution
that is constructed.

3a isolates: If e is an edge of degree zero, then mark e virtual.

The number of non-dominated forbidden structures to which a specific edge
e belongs is also called the degree of e. Can we also handle edges of degree one
(to a certain extent) by reduction rules? We will discuss this point later on.

Two-Layer Planarization: Improving on Parameterized Algorithmics 141

Let C = {c, w1, w2, w3, x1, x2, x3} be a 2-claw centered at c, such that wi is
neighbored (at least) to c and xi for i = 1, 2, 3. We will call Fi = {cwi, wixi}
also a finger of C, so that the forbidden structure fC corresponding to C is
partitioned into three disjoint fingers. A 2-claw where one or more edges are
virtual is called injured. Clearly, in an injured 2-claw with five edges, only one
of the fingers actually got injured and two fingers are still pretty. In an injured
2-claw with four edges, we still have at least one pretty finger left over.

The second ingredient in the approach to hitting set problems described in [6]
are so-called heuristic priorities. More specifically, we use the following rules to
select forbidden structures and edges to branch at in case of multiple possibilities:

1. Select a forbidden structure f of smallest size that if possible corresponds to
a short cycle.

2. If s(f) ≤ 5 and if there is another forbidden structure f ′ with c(f)∩c(f ′) �= ∅
and s(f ′) ≤ 5, modify f := c(f) ∩ c(f ′).

3. Select an edge e of maximal degree within f , if possible incident to the center
of the 2-claw f , such that e belongs to a pretty finger.

In the following analysis, assume that we have already branched on all cycles
up to length five (see the first heuristic priority). Then, we can apply the following
reduction rule for (injured) 2-claws:

3b (injured) 2-claws: If e is an edge of degree one in a forbidden structure of
size four, five or six corresponding to an (injured) 2-claw, and if e is incident
to the center of the corresponding 2-claw, then mark e virtual.

This allows us to state the whole procedure in Alg. 1, where branch at e
means the following:

if TLP(G− e, k − 1, M, DF) then
return YES

else if G[M ∪ {e}] is acyclic then
return TLP(G, k, M ∪ {e}, DF)

end if
To prove the soundness of rule 3b., we have to show that we will never miss

out cycles this way. We therefore show the following assertions:

Proposition 1. At most one edge per finger will turn virtual due to rule 3b.

Proof. 3b. obviously only affects one 2-claw at a time, since only edges of size
one are turned virtual. Per 2-claw, the rule triggers at most once per finger. ��

Proposition 2. Cycles of length at least six that only consists of virtual edges
can never be created by running Alg. 1.

To prove Proposition 2, the following observation is crucial.

Property 1. Let F = {xy, yz} be one pretty finger of a non-dominated (injured)
2-claw C with center x such that xy occurs only in one forbidden structure, i.e.,
C. Then, y has degree two.

142 H. Fernau

Algorithm 1 A search tree algorithm for 2-LP, called TLP
Require: a graph G = (V, E), a positive integer k, a set of virtual edges M , a list of

dominated forbidden structures DF

Ensure: YES if there is a biplanarization set B ⊆ E, |B| ≤ k (and it will implicitly
produce such a small biplanarization set then) or
NO if no such set exists.

Exhaustively apply the reduction rules 1., 2., and 3a.; the resulting instance is also
called (G, k, M, DF).
if Φ(G[E \ M]) > 2k then

return NO {Lemma 5}
else if Φ(G[E \ M]) = 0 then

if k ≥ # component wreaths of G[E \ M] then
return YES {Lemma 4}

else
return NO

end if
else

{∃ v ∈ V such that deg′
G[E\M (])v ≥ 3}

if possible then
Find a non-dominated cycle C of length at most 5
Select an edge e ∈ C and branch at e

else
Exhaustively apply all reduction rules
Select 2-claw C and edge e ∈ C according to heuristic priorities; branch at e

end if
end if

Proof. If the conclusion were false, there must be an edge yv in the given 2-LP
instance. Hence, there is an (injured) 2-claw C ′ with center x which is like C,
only having z replaced by v. This contradicts that xy has degree one, since xy
participates both in C and in C ′. ��

Now to the time analysis of Alg. 1, following the ideas explained in [6] for
3-HS. T (k) denotes the number of leaves in a worst-case search tree for Alg. 1,
which incidentally also is the worst-case for the number of returned solutions.
More distinctly, let T �(k) denote the situation of a search tree assuming that at
least � forbidden structures in the given instance (with parameter k) have size
five. Of course, T (k) ≤ T 0(k). We analyze the recurrences for T 0, T 1 and T 2.

Lemma 6. T 0(k) ≤ T 0(k − 1) + T 2(k).

Proof. Due to the reduction rule 3b., the 2-LP instance G contains an edge e
of degree 2 in a forbidden structure f of size 6, since f represents a 2-claw.
Hence, there is another 2-claw corresponding to a forbidden structure f ′ with
e ∈ f ∩ f ′. One branch is that e is put into the biplanarization set. The size of
the corresponding subtree can be estimated by T 0(k−1). If e is not put into the
biplanarization set, then e is marked virtual and hence at least two forbidden

Two-Layer Planarization: Improving on Parameterized Algorithmics 143

structures of size five are created: f \{e} and f ′ \{e}. Therefore, the size of that
subtree is upperbounded by T 2(k). ��

Some more involved analysis of the T 1- and T 2-branches as well as some
algebra for solving the recursions, shows:

Lemma 7. T 1(k) ≤ 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1).

Lemma 8. T 2(k) ≤ max{2T 1(k−1)+3T 2(k−1), T 0(k−1)+16T 0(k−2), 2T 0(k−
1) + 9T 0(k − 2), 3T 0(k − 1) + 4T 0(k − 2), 4T 0(k − 1) + T 0(k − 2)}.

Theorem 2. Given a graph G and an integer k, Alg. 1 determines if bpr(G) ≤ k
in O(k2 · 5.1926k + |G|) time, when applied to the problem kernel derived in [4].

To prove these results, the following lemma is important, which is also inter-
esting from a structural point of view on its own account; this also explains why
we considered 5-cycles as forbidden structures.

Lemma 9. In a graph without cycles up to length five, each 2-claw is vertex-
induced.

4 1-Layer Planarization: Kernelization Algorithm

The next two results from [4] give important properties for π-biplanar graphs.

Lemma 10. A bipartite graph G = (A, B; E) with a fixed permutation π of A
is π-biplanar if and only if G is acyclic and the following condition holds.

For every path (x, v, y) of G with x, y ∈ A, and for every vertex u ∈ A
between x and y in π, the only edge incident to u (if any) is uv. (�)

Let G = (A, B; E) be a bipartite graph with a fixed permutation of A that
satisfies condition (�). Let H = K2,p be a complete bipartite subgraph of G
with H ∩ A = {x, y}, and H ∩ B = {v ∈ B : vx ∈ E, vy ∈ E, degG(v) = 2},
and |H ∩ B| = p. Then H is called a p-diamond. Every cycle of G is in some
p-diamond with p ≥ 2.

Lemma 11. If G = (A, B; E) is a bipartite graph and π is a permutation of A
satisfying condition (�) then bpr(G, π) =

∑
maximal p-diamonds of G(p− 1) .

We are now going to derive a kernelization algorithm for 1-LP. Let us say
that an edge e of a bipartite graph G potentially violates condition (�) if, using
the notation of condition (�), e = ei for i = 1, 2, 3, where e1 = xv or e2 = vy or
e3 = uz for some u strictly between x and y in π such that z �= v. We will also
say that e1, e2, e3 (together) violate condition (�).

According to Lemma 10 (as well as the proof of Lemma 11 for the last
two rules), the following reduction rules are sound, given an instance (G =
(A, B; E), π, k) of 1-LP. Analogues to the first three rules are well-known from
Hitting Set problems, see [6, 8].

144 H. Fernau

1L-RR-edge: If e ∈ E does not participate in any cycle and does not poten-
tially violate condition (�), then remove e from the instance (keeping the same
parameter k).
1L-RR-isolate: If v ∈ A ∪ B has degree zero, then remove v from the instance
and modify π appropriately (keeping the same parameter k).
1L-RR-large: If e ∈ E participates in more than k2 situations that potentially
violate condition (�), then put e into the biplanarization set and modify the
instance appropriately (also decreasing the parameter).

Let E� ⊆ E be all edges that potentially violate condition (�). Let E◦ ⊆ E be
all edges that participate in cycles. Let G4c be generated from those edges from
E�\E� that participate in 4-cycles. By construction, G4c satisfies (�). Lemma 11
shows that the next reduction rule can be applied in polynomial time:
1L-RR-4C: If bpr(G4c, π) > k, then NO.

Lemma 12. Let G = (A, B; E) be a bipartite graph and let π be a permutation
of A. Let v ∈ B. Then, there is at most one edge e incident to v that does not
potentially violate condition (�) and participates in cycles of length > 4.
Theorem 3. Let G = (A, B; E) be a bipartite graph, π be a permutation of A
and k ≥ 0. Assume that none of the reduction rules applies to the 1-LP instance
(G, π, k). Then, |E| ≤ k3. The kernel can be found in time O(|G|2).�

Proof. Now consider E� as vertex set V ′ of a hypergraph G′ = (V ′, E′) and put
{e1, e2, e3} into E′ iff e1, e2, e3 together violate condition (�). A subset of edges
from E whose removal converts (A, B; E) into a bipartite graph which satisfies
condition (�) is in obvious one-to-one correspondence with a hitting set of the
hypergraph G′. Niedermeier and Rossmanith have shown [8–Proposition 1] a
cubic kernel for 3-Hitting Set, so that at most k3 edges are in E� (else NO).
Their reduction rules correspond to our rules 1L-RR-edge and 1L-RR-large.

If e = xy ∈ E◦ \E� with y ∈ B does not belong to a 4-cycle, then Lemma 12
shows that there is no other edge zy ∈ E◦ \ E�. But since xy ∈ E◦, there must
be some “continuing edge” zy on the long circle xy belongs to, so that zy ∈ E�

follows. We can take zy as a witness for xy. By Lemma 12, zy can witness for
at most one edge from E◦ \ E� incident to y and not participating in a 4-cycle.

This allows us to partition E◦ into three disjoint subsets: (a) E◦ ∩ E�, (b)
E4c = {e ∈ E◦ \ E� | e participates in a 4-cycle }: there can be at most 4k such
edges according to 1L-RR-4C and Lemma 11, and (c) E◦ \E4c: according to our
preceding reasoning, there are at most |E�| many of these edges. ��

5 1-Layer Planarization: Bounded Search Tree
Theorem 4. (Dujmović et al. [4]) Given a bipartite graph G = (A, B; E), a
fixed permutation π of A, and integer k, there is an algorithm that determines
if bpr(G, π) ≤ k in O(3k · |G|) time.

� More recently, a quadratic kernel for 3-Hitting Set was derived [9] based on results
by Nemhauser and Trotter. Translating the corresponding reduction rules shows that
|E�| and hence |E| is in fact upperbounded by O(k2).

Two-Layer Planarization: Improving on Parameterized Algorithmics 145

Can we further improve on this algorithm? Firstly, it is clear that we can com-
bine the search tree algorithm with the kernelization algorithm described above.
But furthermore, observe that the search tree algorithm basically branches on
all members of E�, trying to destroy the corresponding triples of edges violating
condition (�). This means that we again take ideas stemming from solutions of
the naturally corresponding instance of 3-Hitting Set. Unfortunately again,
we cannot simply “copy” the currently best search tree algorithm for 3-Hitting
Set [6, 8], running in time O(k ·2.179k + |G|), since destroying triples of edges vi-
olating condition (�) might incidentally also destroy more or less of the 4-cycles.
As explained in the 2-LP case, the problem is again the vertex domination
rule. In order to gain anything against the previously sketched algorithm 1-Layer
Bounded Search Tree, we must somehow at least avoid branching on vertices of
degree one contained in hyperedges of size three.

Firstly, we can prove a lemma that shows that, whenever we have branched
on all hyperedges of size three in the 3-Hitting Set instance (that correspond
to situations violating condition (�) in the original 1-LP instance) that contain
vertices of degree at least two, then we have already destroyed all “large” cycles.
Then, we investigate the possible interaction between a cycle of length four and
a structure violating (�), after having “destroyed” all “mutually interacting”
structures violating (�).

Lemma 13. Let G = (A, B; E) be a bipartite graph and π be a fixed permutation
of A. Assume that if h = {e1, e2, e3} and h′ = {e′

1, e
′
2, e

′
3} are two situations

violating (�), then h ∩ h′ = ∅. Let C = {ab, bc, cd, da} be a sequence of edges
forming a 4-cycle. Then, there is at most one hyperedge h—among the hyperedges
modeling situations violating (�)—such that C ∩ h �= ∅.

Hence, after the indicated branching, for each 4-cycle, at most one hyperedge
of size three remains such that the corresponding edge sets have non-empty in-
tersection. Since we have to destroy every 4-cycle, the best we then can obviously
do is to take out an edge that takes part in the “accompanying” situation vio-
lating (�). This can be done completely deterministically due to the preceding
lemma. Finally, the only remaining situations correspond to possibly interacting
4-cycles. These can be solved with Lemma 11.

Theorem 5. 1-LP can be solved in O(k3 · 2.5616k + |G|2) time.

6 Conclusion

In this paper we have presented two methods for producing FPT algorithms in
the context of 2-layer and 1-layer planarization. In particular, for fixed k, we have
polynomial time algorithms to determine if bpr(G) ≤ k and bpr(G, π) ≤ k. The
smaller exponential bases (in comparison with [4]) are due to the tight relations
with Hitting Set, as we exhibited. For small values of k, our algorithms provide
a feasible method for the solution of these NP-complete problems.

With the results in [4, 5], we have now good kernelization and search tree
algorithms for three types of “layered planarization” problems:

146 H. Fernau

1. For 2-LP, we got an O(k2 ·5.1926k + |G|) algorithm and a kernel size O(k).��

2. For 1-LP, we found anO(k3·2.5616k+|G|2) algorithm and a kernel sizeO(k3).
3. For 1-Layer Crossing Minimization, we obtained an O(1.4656k +k|G|2)

algorithm and a kernel size O(k2), where k is now the number of crossings.

For 2-Layer Crossing Minimization, the (more general) results of [3] only
give an O(232(2+2k)3 |G|) algorithm, which should be further improvable.

Acknowledgments. We are grateful for discussion of this topic with V. Dujmović
and for the very thoughtful comments of the reviewers.

References

1. P. Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction. In R. Downey, M. Fellows, and F. Dehne, editors, Intern. Workshop
on Parameterized and Exact Computation IWPEC 2004, volume 3162 of LNCS,
pages 1–12. Springer, 2004.

2. R. G. Downey and M. R. Fellows. Parameterized complexity. Springer, 1999.
3. V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,

N. Nishimura, P. Ragde, F. Rosamond, M. Suderman, S. Whitesides, and D. R.
Wood. On the parameterized complexity of layered graph drawing. In F. Meyer
auf der Heide, editor, European Symp. on Algorithms ESA, volume 2161 of LNCS,
pages 488–499. Springer, 2001.

4. V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R.
Wood. A fixed-parameter approach to two-layer planarization. In P. Mutzel,
M. Jünger, and S. Leipert, editors, Graph Drawing GD 2001, volume 2265 of LNCS,
pages 1–15. Springer, 2002.

5. V. Dujmović, H. Fernau, and M. Kaufmann. Fixed parameter algorithms for one-
sided crossing minimization revisited. In G. Liotta, editor, Graph Drawing GD
2003, volume 2912 of LNCS, pages 332–344. Springer, 2004.

6. H. Fernau. A top-down approach to search-trees: Improved algorithmics for
3-hitting set. TR04-073, Electronic Colloquium on Computational Complexity
ECCC, 2004.

7. P. Mutzel. An alternative method to crossing minimization on hierarchical graphs.
SIAM J. Optimization, 11(4):1065–1080, 2001.

8. R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for
3-hitting set. Journal of Discrete Algorithms, 1:89–102, 2003.

9. N. Nishimura, P. Ragde, and D. Thilikos. Smaller kernels for hitting set problems of
constant arity. In R. Downey, M. Fellows, and F. Dehne, editors, Intern. Workshop
on Parameterized and Exact Computation IWPEC 2004, volume 3162 of LNCS,
pages 121–126. Springer, 2004.

10. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Systems Man Cybernet., 11(2):109–
125, 1981.

�� By changing the heuristic priorities in one case and by using a generalization of rule
3b., we can improve the base to 5.1844.

On the Stability of Approximation for
Hamiltonian Path Problems�

Luca Forlizzi2, Juraj Hromkovič1, Guido Proietti2,3, and Sebastian Seibert1

1 Department Informatik, ETH Zentrum, CH-8092, Zürich, Switzerland
{jh, seibert}@cs.rwth-aachen.de

2 Dipartimento di Informatica, Università di L’Aquila, 67010 L’Aquila, Italy
{forlizzi, proietti}@di.univaq.it

3 Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Roma, Italy

Abstract. We consider the problem of finding a cheapest Hamiltonian
path of a complete graph satisfying a relaxed triangle inequality, i.e.,
such that for some parameter β > 1, the edge costs satisfy the inequality
c({x, y}) ≤ β(c({x, z}) + c({z, y})) for every triple of vertices x, y, z.
There are three variants of this problem, depending on the number of
prespecified endpoints: zero, one, or two. For metric graphs, there exist
approximation algorithms, with approximation ratio 3

2 for the first two
variants and 5

3 for the latter one, respectively.
Using results on the approximability of the Travelling Salesman Prob-

lem with input graphs satisfying the relaxed triangle inequality, we obtain
for our problem approximation algorithms with ratio min(β2 + β, 3

2β2)
for zero or one prespecified endpoints, and 5

3β2 for two endpoints.

1 Introduction

It often happens that the hardness of the polynomial-time approximability of a
problem varies according to the input instance, and some hard problem becomes
relatively easy for certain subclasses of instances. Given an hard optimization
problem, and a polynomial-time approximation algorithm for a subclass of input
instances, a natural idea is trying to extend the approximation algorithm to a
wider class of problem instances. This idea is captured by the notion of stability
of approximation, which provides a formal framework to study the change of
the approximation ratio according to a small change in the specification (some
parameter, characteristics) of the set of problem instances considered [1].

One of the most successful application of the concept of stability of approx-
imation concerns the famous Travelling Salesman Problem (TSP). It is well
known that TSP is not only NP-hard, but also not approximable in polynomial
time with constant approximation ratio. But if one considers Δ-TSP, namely

� The work reported in this paper has been partially supported by the Italian MIUR
under the project “Web-based management and representation of spatial and geo-
graphical data”.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 147–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

148 L. Forlizzi et al.

TSP for complete input graphs satisfying the triangle inequality (i.e., metric
graphs), one can design a polynomial time 3

2 -approximation algorithm [2]. To
extend the class of input graphs for which the TSP is approximable (in poly-
nomial time, with constant approximation ratio), one considers the so called
β-triangle inequality. For a given β > 1, a graph (V, E) satisfies the β-triangle
inequality if for all vertices u, v, x it is c({u, v}) ≤ β(c({u, x})+c({x, v})), where
c : E �→ R+ is the cost function of the graph. For every real β > 1, the Δβ-TSP
is the restriction of the TSP to inputs satisfying the β-triangle inequality.

In the past, several polynomial time approximation algorithms providing con-
stant approximation ratio for Δβ-TSP, where proposed. Currently, there are
three different algorithms which achieve the smallest approximation ratio, each
for a distinct range of values of β:

(A) The REFINED T 3 algorithm, providing a (β2 +β) approximation ratio [3],
which is the best for 2 ≤ β ≤ 3;

(B) The Bender and Chekuri 4β-approximation algorithm [4], best for β > 3;
(C) The Path Matching Christofides Algorithm (PMCA) providing a 3

2β2

approximation ratio [1], best for 1 < β ≤ 2.

In this paper, we study how these results can help to design approximation
algorithms for the Hamiltonian Path Problem (HPP), where one is required to
compute a minimum cost Hamiltonian path spanning a complete graph G. There
are three natural variants of the HPP, differing in the constraints imposed to
the endpoints of the desired path: they can be both arbitrary vertices (HPP0),
or one of them can be constrained to be a prespecified vertex s (HPP1), or both
of them can be constrained to be prespecified vertices s and t (HPP2). All these
variants are easily reducible to TSP, so they are NP-hard too. Concerning their
approximability, in [5], Christofides ideas presented in [2] for the Δ-TSP were
applied to the Δ-HPP, providing 3

2 -approximation algorithms for Δ-HPP0 and
Δ-HPP1, and a 5

3 -approximation algorithm for Δ-HPP2.
In this paper, trying to extend the class of graphs for which HPP is approx-

imable, we consider again β-triangle inequality and investigate whether each
of the three approaches for Δβ-TSP is suitable also for Δβ-HPP. To this aim,
we concentrate on adapting the approaches of (A) and (C), which distinguish
themselves by running times O(n2) and O(n3), respectively, where n is the num-
ber of vertices in G. This is acceptable for practical purposes rather than the
O(n5) running time of (B). We just note why the approach of (B) would need
some additional considerations in order to be carried over to HPP. The algo-
rithm of Bender and Chekuri is based on results by Fleischner [6, 7], who proved
that the square of a 2-node-connected graph is Hamiltonian, and by Lau [8, 9],
who provided an effective procedure for the construction of a Hamiltonian cy-
cle. So, Bender and Chekuri first construct an approximation of the minimum
cost 2-node-connected subgraph, and then apply, on the resulting graph, Lau’s
procedure to obtain a Hamiltonian cycle. The length of a minimum cost 2-node-
connected subgraph is a lower bound on the cost of any Hamiltonian cycle, and
from this fact the bound on the cost of their solution follows. However, the length
of a minimum cost 2-node-connected subgraph is not a lower bound on the cost

On the Stability of Approximation for Hamiltonian Path Problems 149

of a Hamiltonian path. Hence, this approach does not lead immediately to an
approximation algorithm for the HPP.

The approaches leading to algorithms (A) and (C) are studied in Sections 2
and 3, respectively. For HPP0 and HPP1, they both keep the same ratio bounds
as for the TSP. Hence we obtain min(β2 +β, 3

2β2)-approximation algorithms for
Δβ-HPP0 and Δβ-HPP1. In the case of HPP2, the 5

3 -approximation ratio for
metric graphs is reflected in the (5

3β2)-approximation algorithm obtained using
the PMCA approach. Instead, with the T 3 approach we have an approximation
ratio always worse than that obtained with PMCA. Nevertheless, the T 3 ap-
proach is still somehow useful for HPP2, since it allows to obtain an O(n2) time
3-approximation algorithm for Δ-HPP2, faster than the O(n3) time previously
known approximation algorithm.

Following [5], we let P ∗ denote an optimal Hamiltonian path without pre-
scribed endpoints, P ∗

s denote an optimal Hamiltonian path with a single pre-
scribed endpoint s, and P ∗

st denote an optimal Hamiltonian path with prescribed
endpoints s and t. Given a graph G and a collection Π of paths on the nodes
of G, we denote by G ∪ Π the graph obtained by adding to G all the edges
of each path in Π. We denote by EndP(Π) the set formed by the endpoints
of all the paths contained in Π. Given a graph G and an edge e, we denote
by G − e the graph obtained by removing e from G. We call an occurrence of
a vertex in a path γ internal, if it is not an endpoint of γ. Given a path γ,
we say that a subpath γ′ of γ is a terminal subpath if one of the endpoints
of γ′ is also an endpoint of γ. A path in a graph is elementary if it does
not contain the same vertex more than once. An edge e∗ is locally minimal
if there is a vertex v ∈ V such that e∗ is an edge incident to v of minimum
cost.

Due to space limitations, we skip theorem proofs and some technical details in
the presented algorithms. They can be found in the full version of this paper [10].

2 The REFINED T3 Algorithm for Hamiltonian Path

In 1960, Sekanina proved that for every tree T = (V, E) the graph

T 3 = (V, {{x, y} |x, y ∈ V, and there is a path from x to y in T of length ≤ 3})

contains a Hamiltonian cycle H = (u1, u2, . . . , un). This means that every edge
{ui, ui+1} of H has a corresponding unique path Pi in T of length at most 3.

Starting from this result Andreae and Bandelt designed in [11] a (3
2β2 + 1

2β)-
approximation algorithm for Δβ-TSP. In fact, they were able to construct a
Hamiltonian cycle H of T 3, such that each edge of T occurs in exactly two of
the paths Pi, and that it is the middle edge of at most one path Pi of length 3.
The properties of H, imply that expensive edges of T do not occur in P (H) =
P1, . . . , Pn more often than cheap edges. Then the cost of P (H), and so the cost
of H, is bounded by a factor times the cost of T , which, in turn, is a lower bound
for the cost of an optimal Hamiltonian cycle.

150 L. Forlizzi et al.

Andreae and Bandelt result was recently improved by Andreae [3], that pre-
sented a (β2 + β)-approximation algorithm for Δβ-TSP. The main part of such
algorithm is a procedure called HCT3(REFINED), which, given a locally mini-
mal edge e∗ of T , computes a Hamiltonian cycle H of T 3 containing e∗. The core
result obtained by Andreae is the following ([3], Theorem 1): for a tree T with
|T | ≥ 3 and a real number β ≥ 1, suppose T 3 satisfies the β-triangle inequality.
Then it is c(H) ≤ (β2 + β)c(T), and this inequality is strict if β > 1.

The fact that the cost of the graph constructed is bounded using the cost of
T , is particularly interesting for our purposes, since the cost of T is a lower bound
for the cost of an optimal Hamiltonian path, too. Indeed, using Andreae’s result,
we can easily derive (β2 +β)-approximation algorithms for HPP0 and HPP1, by
simply removing an appropriate edge from the Hamiltonian cycle computed by
HCT3(REFINED), see [10] for details.

An interesting feature of HCT3(REFINED), is that the input an edge is part
of the returned cycle. This feature suggests immediately the following strat-
egy to approximate HPP2: given the two prespecified endpoints s and t, use
HCT3(REFINED) to compute a Hamiltonian cycle Hst containing {s, t}, and
return the path πst obtained after deleting {s, t} from Hst. Indeed, this idea
leads us to the following approximation algorithm for Δ-HPP2.

Input: A metric graph G = (V, E) and two vertices s, t ∈ V
1: Find a minimum spanning tree T containing {s, t} for G
2: Find a Hamiltonian cycle Hst of T 3 by means of HCT3 with T and {s, t} as input
3: Find a Hamiltonian path πst of G by removing edge {s, t} from Hst

Output: A Hamiltonian path πst of G having s and t as endpoints

Algorithm 1. T3 Metric-HPP2

Note that in Alg. 1, we use Procedure HCT3 presented in [11] instead of
the improved version HCT3(REFINED). The two procedures are similar, and
for a metric graph G, given a tree T and an edge e of T , they both compute a
Hamiltonian cycle He containing e such that c(He) ≤ 2c(T) ≤ 2c(H∗), where
H∗ is a minimum Hamiltonian cycle of G. There are two advantages in using
HCT3 instead of HCT3(REFINED): the former procedure does not require the
input edge e to be locally minimal, and it also is more efficient, requiring O(n)
time.

Although Alg. 1 has a poor approximation guarantee, it deserves some in-
terest being more efficient than the O(n3) time algorithm derived in [5] from
Christofides one.

Theorem 1. Let G be a graph satisfying the Δ-inequality. Algorithm 1 is a
3-approximation algorithm for Δ-HPP2. The algorithm runs in O(n2) time.

Unfortunately, Alg. 1 does not provide an approximation guarantee if the
input graph does not satisfy the Δ-inequality, because in a general graph the
cost of {s, t} can not be bounded using c(P ∗

st).

On the Stability of Approximation for Hamiltonian Path Problems 151

To extend the Sekanina approach to Δβ-HPP2, we need another idea. Suppose
we have a Hamiltonian path γ spanning G, with cost bounded by a factor times
c(P ∗

st). We can transform it into a Hamiltonian path having s and t as endpoints,
still having a cost bounded by a factor times c(P ∗

st), as follows. W.l.o.g., let
γ = (w, . . . , s, s1, . . . , t1, t, . . . , z). We first show how to obtain a path γ′ having
s as endpoint. Consider γs = (w, . . . , s, s1) and let Gs be the subgraph of G
induced by the vertices occurring in γs. Since γs is a tree containing {s, s1}, the
cost of a minimum spanning tree Ts of Gs containing {s, s1} is a lower bound for
c(γs). Using HCT3(REFINED), we compute a Hamiltonian cycle Hs containing
{s, s1} such that c(Hs) ≤ (β2 + β)c(Ts) ≤ (β2 + β)c(γs). Then, replacing γs

with Hs in γ, we obtain a graph where s1 is the only vertex having degree 3.
By removing {s, s1}, we have the desired path γ′. The same operations can be
repeated for the other prescribed endpoint t, leading to the following result:

Theorem 2. Let G be a graph satisfying the Δβ-inequality. Algorithm 2 is a
((β2 + β) min(β2 + β, 3

2β2))-approximation algorithm for Δβ-HPP2. The algo-
rithm runs in O(n3) time.

Input: A graph G = (V, E) and two vertices s, t ∈ V
1: Compute a Hamiltonian path γ = (w, . . . , s, s1, . . . , t1, t, . . . , z) for G
2: Let γs = (w, . . . , s, s1), γt = (t1, t, . . . , z), denote by Gs and Gt the subgraphs of G induced by

the vertices occurring, respectively in γs and γt

3: Compute minimum spanning trees Ts of Gs containing {s, s1} and Tt of Gt containing {t1, t}
4: Compute Hamiltonian cycles Hs of Gs and Ht of Gt containing respectively {s, s1} and {t1, t}
5: Put πs = Hs − {s, s1}, πt = Ht − {t1, t}
6: Compute πst from γ, by replacing γs with πs and γt with πt

Output: A Hamiltonian path πst of G having s and t as endpoints

Algorithm 2. T3 HPP2

3 The PMCA for Hamiltonian Path

The PMCA is a (3
2β2)-approximation algorithm for the Δβ-TSP problem, in-

spired by Christofides algorithm for Δ-TSP. The rough idea of both algorithms
is the following: first compute a multigraph H with all vertices of even degree,
having a cost bounded by 3

2 times the cost of an optimal Hamiltonian cycle, then
compute an Eulerian cycle of H (it has the same cost), and finally transform the
Eulerian cycle in a Hamiltonian one by resolving all conflicts i.e., by removing
repeated occurrences of vertices in the cycle.1 The final task is trivial in the case
of Christofides algorithm, but not for the PMCA. Indeed, given the β-triangle
inequality, with β > 1, the bypassing of some vertices in a path may increase
the cost of the path.

To illustrate the conflict resolution performed as last task of the PMCA we
need some formal definitions. Let G = (V, E) be a complete graph. A path match-
ing for a set of vertices U ⊆ V is a collection Π of edge-disjoint paths having as

1 We recall that a cycle or a path is Eulerian when it uses each edge exactly once.

152 L. Forlizzi et al.

endpoints vertices of U . The vertices of U which are not endpoints of some path
in Π, are said to be left exposed by Π. Assume that p = (u0, u1, u2, . . . , uk−1, uk)
is a path in G, not necessarily simple. A bypass for p is an edge {u, v} from E,
replacing a subpath (ui, ui+1, ui+2, . . . , uj−1, uj) of p from u = ui to uj = v
(0 ≤ i < j ≤ k). Its size is the number of replaced edges, i.e. j − i. Also, we say
that the vertices ui+1, ui+2, . . . , uj−1 are bypassed. Given some set of paths Π,
a conflict according to Π is a vertex which occurs at least twice in Π.

The PMCA succeeds in bounding by a factor β2 the cost increase due to
conflict resolution, by ensuring, with non trivial techniques, that at most 4 con-
secutive edges of the Eulerian cycle are substituted with a new one. In detail,
H is the union of a minimum spanning tree T and a path matching Π for the
set of all vertices of odd degree in T . The Eulerian cycle π of H can be seen
as a sequence of paths p1, q1, p2, q2, . . . such that p1, p2, . . . are paths in T and
q1, q2, . . . ∈ Π. The conflict resolution process is realized in three steps:

(i). conflicts within Π are resolved obtaining a collection Π ′ of vertex-disjoint
paths;

(ii). some of the conflicts within paths in T are resolved so that the cycle π′

obtained by modifying π according to steps (i) and (ii), contains at most 2
occurrences of each vertex;

(iii). all remaining conflicts in π′ are resolved, by bypassing at most 2 consecutive
vertices.

Combining the ideas of [5] and [1], we obtain an approximation algorithm for
the Δβ-HPPx, x ∈ {0, 1, 2} (see Alg. 3).

Input: A complete graph G = (V, E) with cost function c : E �→ R
+ and a set A of k prespecified

endpoints (0 ≤ k ≤ 2).
1: Construct a minimum spanning tree T of G.
2: Let U be the set composed by vertices in A having even degree in T plus vertices of V \A having

odd degree in T ; construct a minimal (edge-disjoint) path matching Π for U , leaving 2 − k
vertex of U exposed. If necessary, remove an edge from T , so that the graph T ∪ Π has 2 odd
degree vertices, which we denote by w and z (observe that any prespecified endpoint is among
w and z).

3: Resolve conflicts according to Π (using bypasses of size 2 only), in order to obtain a vertex-
disjoint path matching Π′ such that z can only occur as an endpoint of a path in Π′.

4: Construct an Eulerian path π of H = T ∪ Π′ having w and z as endpoints (π can be considered
as a sequence of alternating paths from T and Π′, where p1, p2, . . . are the paths in T and
q1, q2, . . . ∈ Π′).

5: Resolve conflicts inside the paths p1, p2, . . . obtaining the modified paths p′
1, p′

2, . . . and the
modified Eulerian path π′, so that T is divided into a forest Tf of trees of degree at most 3,
w and z are the endpoints of π′, and z is not a conflict (conflict resolution in this step is done
using bypasses of size 2 only).

6: Resolve every remaining conflicts in π′ using bypasses of overall size 4 (where overall means that
a bypass constructed in any previous step counts for 2 edges), obtaining a Hamiltonian path
π′′ having w and z as endpoints.

Output: A Hamiltonian path π′′ of G having w and z as endpoints.

Algorithm 3. PMCA-HPPk

Similarly to the PMCA, Alg. 3 starts by computing a multigraph H with all
vertices but 2 of even degree. The 2 odd degree vertices include any prespecified

On the Stability of Approximation for Hamiltonian Path Problems 153

endpoint. Since H is the union of 2 graphs, between a pair of vertices there can
be at most 2 edges, one from T and one from Π ′. In the following descrption,
it will be clear from the context whether edges we refer to are contained in
T or in Π ′. Successively, Alg. 3 constructs an Eulerian path π of H, having
the odd degree vertices as endpoints. Finally, conflicts are resolved obtaining a
Hamiltonian path.

Here, the conflict resolution process can not be realized as in the PMCA.
In particular, in step (iii) of the conflict resolution process in PMCA, for each
conflict there is complete freedom in choosing which of the 2 vertex occurrences
to bypass. To avoid that more than 2 consecutive vertices of π′ are bypassed,
PMCA relies exactly on this freedom. In our problem, we loose part of such
freedom, since it may happen that the endpoints of π′ are conflicts: in this case,
we are not allowed to bypass the occurrences which are endpoints of π′, hence
we are forced to bypass the 2 internal ones. Although the problem regards only
two vertices, it may render impossible to resolve all conflicts bypassing at most
2 consecutive vertices, as the following example shows.

w1 w2 z1 z2v1 v2

Fig. 1. Impossibility of conflict resolution bypassing at most 2 consecutive vertices

In Fig. 1, w1, w2, (as well as z1, z2 and v1, v2) denote distinct occurrences in
π of the same vertex. Since we are forced to bypass both w2 and z1, no matter
which one of v1, v2 we bypass, there would be 3 consecutive bypassed vertices
in the Hamiltonian path, causing the cost to increase more than a factor β2.
To avoid such situations, and resolve all conflicts in π′ by bypassing at most 2
consecutive vertices, we have to change the whole conflict resolution process, as
described in the following.

Step 1 of Alg. 3 is trivial, while Step 2 is described in [1]. After Step 2, the
multigraph T ∪ Π is connected and has two or zero odd-degree vertices. The
latter case occurs only if: there is a single prespecified endpoint s, s has even
degree in T (so it belongs to U), and s is left exposed by Π. In this case we
remove an arbitrary edge of T incident to s. Let w and z be the two odd-degree
vertices in the obtained multigraph. It can be easily seen that any prespecified
endpoint is contained in {z, w}. Given a vertex v ∈ V we define the distance in
T of v from z, as the number of edges in the unique elementary path existing in
T from v to z, prior to the possible removal, discussed above, of an edge incident
to s from T . We denote by y the unique neighbor of w in T whose distance in T
from z is less than the distance in T of w from z. The remaining steps of Alg. 3
deserve a detailed description.

Step 3. To perform Step 3 of the algorithm, i.e., to modify path matching Π
into a vertex-disjoint one, we use a strategy different from the one employed
in the PMCA. The reason is that we have the additional requirement that at

154 L. Forlizzi et al.

least one of the two odd-degree vertices that exist in T ∪Π after Step 2, say z,
does not have internal occurrences on paths in Π ′. As in Procedure 1 of [1], we
process each connected component of the forest formed by Π separately. To this
aim, here we use Algorithm Decompose-Tree (see Alg. 4) which, given a set of
edge-disjoint paths computes a new set of paths with the same set of endpoints,
such that on each new path there is at most one bypass of size 2, and on one of
the new paths there is no bypass. More precisely, we prove the following lemma.

Lemma 1. Let S be a set of edge-disjoint paths with distinct endpoints, forming
a tree TS, and let x be a vertex occurring in some of the paths in S. Algorithm
Decompose-Tree computes a set S′ of vertex-disjoint paths such that:

(i).EndP(S) = EndP(S′);
(ii).each path in S′ is obtained peeking a path from the tree TS and applying to

it at most one bypass of size 2;
(iii).vertex x occurs on a path in S′ obtained peeking a path from TS (with no

bypass applied).

Input: A vertex x and a set of edge-disjoint paths S = {q1, . . . , ql} with distinct endpoints such
that q1, . . . , ql form a subtree of G and q1 contains x

Let S′ = S and q′
1 = q1

While there is at least one conflict in q′
1 do

Let v be a conflict in q′
1 having maximum distance from x. W.l.o.g. assume q′

1 =
(ua, . . . , x, . . . , v, ub, . . . , uc) where the nodes ub, . . . , uc are not conflicts

Let {qi1 , . . . , qih
} be the paths forming the connected component of S \ {q′

1} such that qi1
contains v

Call recursively Decompose-Tree with vertex v and set {qi1 , . . . , qih
} as input, obtaining as

result the set of paths {q′
i1

, . . . , q′
ih

}
Exchange in S′ paths qi1 , . . . , qih

with q′
i1

, . . . , q′
ih

If v is internal to q′
i1

then bypass v from q′
i1

else assuming w.l.o.g. q′
i1

= (y, . . . , y′, v) set q′
i1

= (y, . . . , y′, ub, . . . , uc) and q′
1 =

(ua, . . . , x, . . . , v)
Output: A set of vertex-disjoint paths S′ = {q′

1, . . . , q′
l} such that paths in S′ have the same set of

endpoints as those in S and q′
1 contains x

Algorithm 4. Decompose-Tree

Step 3 is realized by applying Algorithm Decompose-Tree to each connected
component of the forest formed by Π. Property (iii) shown in Lemma 1 is used
to ensure that no internal occurrence of z exists on any path in Π ′ (see [10]).

Step 4. In H = T ∪ Π ′, w and z are the only vertices of odd degree, hence
it is possible to build an Eulerian path of H having such vertices as endpoints.
How to construct such an Eulerian path is a well-studied task. However, to allow
the conflict resolution performed in Steps 5 and 6 we need an Eulerian path π
with a specific structure. In general, there are several occurrences of z and w in
an Eulerian path, but we need that the ones which are endpoints of π satisfy
proper conditions. More precisely, for any of z and w, we need that if it occurs as

On the Stability of Approximation for Hamiltonian Path Problems 155

endpoint of a path in Π ′, then such an occurrence is one of the endpoints of π.
Note that when z and w are endpoints of the same path in Π ′, only one of such
two occurrences can be endpoint of π, so we choose to let the occurrence of z be
endpoint of π. In such a case, as well as if w does not occur at all as endpoint
of a path in Π ′, we are forced to have the occurrence of w as endpoint of π,
be endpoint of a path p in T . Then we need that any occurrence of w internal
to π which is contained in a path pi in T , is the vertex of pi having minimum
distance in T from z.

It is not difficult to build a path π with the desired properties, see [10]
for details. Path π can be considered as an alternating sequence of the form
p1, q1, p2, q2, . . . or q1, p1, q2, p2, . . ., where p1, p2, . . . are paths in T and q1, q2, . . . ∈
Π ′. Note that since T is a tree and π is an Eulerian path, paths p1, p2, . . . are
elementary. The following lemma proves some properties of π.

Lemma 2. Let Π ′ be the vertex-disjoint path matching obtained at the end of
Step 3 and π be the Eulerian path constructed in Step 4. Then:

– every vertex v ∈ V different from w, occurs at most once as endpoint of a
path in T ;

– z occurs as endpoint of either a path in T or a path in Π ′;
– if the occurrence of w which is endpoint of π, is endpoint of a path pl in T ,

then each occurrence of w internal to π which is contained in a path p in T ,
is the vertex of p with the minimum distance in T from z.

Step 5. The main part of Step 5, namely the conflict resolution inside the paths
p1, p2, . . . in T , is realized by a procedure derived from Procedure 2 of PMCA
[1], with modifications in order to ensure that there is exactly one occurrence
of z in π′, and that such an occurrence is indeed an endpoint of π′. In this
way, situations like the one illustrated in Figure 1 are not possible, allowing
to complete in Step 6 the conflict resolution process by bypassing at most 4
consecutive edges.

The rough idea is the following. First, z is picked as root of T . Then, we
consider a path pi in T which, under the orientation with respect to z, will go
up and down. The two edges immediately before and after the turning point are
bypassed. One possible view of this procedure is that the minimal spanning tree
is divided into several trees, since each bypass building divides a tree into two.

Lemma 3. Consider the Eulerian path π′ obtained at the end of Step 5. The
endpoints of π′ are w and z. In π′, each vertex v ∈ V occurs either once or twice,
and z occurs exactly once.

Step 6. We first state a crucial property used to prove that bypasses, at the end
of the whole algorithm, have size at most 4. The proof goes along the way of [1],
but there are many technical differences (see [10]).

Lemma 4. In the path π′, between each two bypasses there is at least one vertex
that is not a conflict.

156 L. Forlizzi et al.

Step 6 derives from Procedure 3 of PMCA [1], with the only change that if
w is a conflict, it is the first one to be resolved. To avoid that more than two
consecutive vertices of π′ are bypassed, the procedure realizing Step 6 iterates
through conflicts bypassing one of the two vertex instances according to the
following rule: immediately after bypassing a vertex instance v, resolve, as not
bypassed, an unresolved conflict adjacent to v, if any.

Lemma 5. Step 6 terminates after resolving all conflicts, and it generates by-
passes of size at most 4 overall, i.e., taking into account that some edges of the
input path π′ may be bypasses of size 2 themselves. The endpoints of the returned
Hamiltonian path π′′ are w and z.

Next theorem analyzes approximation ratio and time complexity of Alg. 3.

Theorem 3. For every β, there is a (3
2β2)-approximation algorithm for Δβ-

HPP0 and Δβ-HPP1, and a (5
3β2)-approximation algorithm for Δβ-HPP2. The

algorithms run in O(n3) time.

References

1. Böckenhauer, H.J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the
notion of stability of approximation for hard optimization tasks and the traveling
salesman problem. Theoretical Computer Science 285 (2002) 3–24

2. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem. Technical report, Graduate School of Industrial Administration,
Carnegy–Mellon University (1976)

3. Andreae: On the traveling salesman problem restricted to inputs satisfying a
relaxed triangle inequality. Networks: An International Journal 38 (2001) 59–67

4. Bender, M., Chekuri, C.: Performance guarantees for the TSP with a parameterized
triangle inequality. In Dehne, F.K.H.A., Gupta, A., Sack, J.R., Tamassia, R.,
eds.: Algorithms and Data Structures, 6th International Workshop, WADS ’99,
Vancouver, British Columbia, Canada, August 11-14, 1999, Proceedings. Volume
1663 of Lecture Notes in Computer Science., Springer (1999) 80–85

5. Hoogeveen, J.A.: Analysis of christofides’ heuristic: Some paths are more difficult
than cycles. Operational Research Letters 10 (1991) 291–295

6. Fleischner, H.: The square of every two-connected graph is hamiltonian. Journal
of Combinatorial Theory 16 (1974) 29–34

7. Fleischner, H.: On spanning subgraphs of a connected bridgeless graph and their
application to dt graphs. Journal of Combinatorial Theory 16 (1974) 17–28

8. Lau, H.: Finding a Hamiltonian cycle in the square of a block. PhD thesis, McGill
University (1980)

9. Lau, H.: Finding eps-graphs. Monatshefte für Math. 92 (1981) 37–40
10. Forlizzi, L., Hromkovič, J., Proietti, G., Seibert, S.: On the stability of approxi-

mation for hamiltonian path problems. Technical Report TR 025/2004, Computer
Science Department, University of L’Aquila (2004)

11. Andreae, T., Bandelt, H.J.: Performance guarantees for approximation algorithms
depending on parametrized triangle inequalities. SIAM Journal on Discrete Math-
ematics 8 (1995) 1–16

Robustness of Composed Timed Systems

Hacène Fouchal1, Antoine Rollet2, and Abbas Tarhini1,�

1 GRIMAAG,
Université des Antilles et de Guyane,

F-97157 Pointe-à-Pitre, Guadeloupe, France
Hacene.Fouchal@univ-ag.fr

2 CReSTIC/LICA,
Université de Reims Champagne-Ardenne,

BP 1039 F-51687 Reims Cedex, France
{Antoine.Rollet, Abbas.Tarhini}@univ-reims.fr

Abstract. In this study we present a technique for testing robustness of
Real-time systems described as Component-Based System having timing
constraints. Each component is modeled as a Timed Input-Output Au-
tomaton (TIOA). For robustness issue, we handle two specifications : a
nominal one (the more detailed specification) and a degraded one (con-
sidering only vitale functionnalities). We derive test sequences from the
nominal specification of each component. We proceed to a mutation tech-
nique on these sequences in order to simulate hostile environments. Then
we present a detailled algorithm for the application of test sequences on
the Implementation of the system. This is done by means of an adequate
test architecture consisting of the Implementation Under Test (IUT) of
components, and a distributed tester that consists of a set of coordinating
testers. Each tester is dedicated to test a single component.

Keywords: Real-Time System, Timed Automata, Component based
System, Testing, Robustness.

1 Introduction

The complexity of systems becomes higher and higher. One reason of this com-
plexity increase is the fact that systems consist of many independent distributed
components running concurrently on heterogeneous networks. On other hand,
traditional testing methods are not able to take care of all features of such sys-
tems like time constraints, distribution, integration of a component in a complex
system. Such integration may lead to architectural mismatches when assembling
components with incorrect behavior [1], leaving the system in a hostile envi-
ronment. The criticality of such systems requires the creation of software com-
ponents that can function correctly even when faced with improper usage or
stressful environmental conditions. The degree of tolerance to such situations is
referred to as a component’s robustness.

� Also at Lebanese American University, Beirut, Lebanon.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 157–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 H. Fouchal, A. Rollet, and A. Tarhini

In this paper, we will show how to model a Real-Time Component-Based
Systems (RTCBS). Then how to test robustness on such systems. The muta-
tion method inserts hazards to test sequences generated from the component’s
nominal (original) specification. The mutated test sequences are used to test the
system’s robustness according to a corresponding degraded specification which
describes the minimal authorized behavior in case of unexpected situations.

The execution of timed-mutated test sequences on the IUT is divided into
two phases. In the first phase, the tester executes a set of test sequences to test
the robustness of each component in isolation. In the second phase, the tester
also executes and monitor timed test sequences, but to test the robustness of
interaction between components integrated in a RTCBS and thus testing the
system’s robustness.

In section 2 we give a review on related work done on testing distributed and
component based systems. Section 3 provides a background of different modeling
techniques used to represent CBS. In Section 4 we focus on our method for testing
Real-Time Component Based Systems. In Section 5, we detail the testing archi-
tecture as well as the test execution process. Finally, we conclude in Section 6.

2 Related Work

As far as we know, robustness testing of RTCBS is not widely developed, but
there some interesting works done on distributed testing of real-time systems [2];
however, only few of them, [3], [4] dealt with testing component based systems,
and others [5], [6], [7] studied the construction of component based systems.

Distributed testing was studied with different test architectures. [2] proposed
a distributed tester, with the distribution of global test sequence (GTS) into
local test sequences executed over local testers, where the synchronization and
the fault detectability problems are discussed.

Robustness testing has been studied in many areas. It is based on insertion
of hazards into test sequences. In the following, we give an overview of selected
works on robustness testing and fault injection methods.

A fault injection approach called Software Implemented Fault Injection
(SWIFI) has been developped in many studies. Among, theses studies the FIAT
system ([8]) modifies the binary image of a process in memory (fault injection
at compile time). FTAPE ([9]) combines system-wide fault injection with a con-
trollable workload in order to create high stress conditions and fault propagation
for the machine.

[10] proposed an object oriented approach to test software robustness-based
on parameter data types rather than component functionality. It is a black box
approach, ie the tester uses only the description of the component interface in
terms of parameters and data types. They consider that most robustness failures
of software are caused by code that simply neglects to test for invalid inputs.

Castanet and all present in [11], a study on formal robustness testing. It
mainly consider all possible faults that a system can execute. The designer has
to insert them into the specification and finally derives test sequences from

Robustness of Composed Timed Systems 159

the modified specification. In the following section we discus how a real-time
component-based system is best modelled.

3 Formal Description of Systems

Software architecture (SA) dynamics that represent the individual components
and their interactions are used in building component-based systems. [12] dis-
tinguished between the following perspectives of CBS:

– the individual component implementation: the executable realization of a
component,

– the component interface (interaction): summarizes the properties of the
component that are externally visible to the other parts of the system,

– real-time component: component technology for real-time systems should
support specification and prediction of timing.

In fact, the time factor problem in reactive real-time component based sys-
tems (RTCBS) is not enough investigated [12]. The time issue should be included
in the model of such systems, where an action from the environment is modeled
as an input event, while the reaction from the system is an output event. A Timed
Input Output Automata (TIOA) is able to specify a sequence of inputs and their
corresponding outputs; moreover, it shows timing constraints on events occur-
ring in the system. Consequently, a TIOA best represents the (SA) dynamics of
a RTCBS. Time is considererd as continous. But this model does not consider
data exchanges.

Even this model is well known for state explosion in industrial systems, we
have chosen it to describe our systems. It has been defined by Alur-Dill [13] as
a finite set of states and a finite set of clocks which are real-valued variables.
All clocks proceed at the same rate and measure the amount of time that has
elapsed since they were started or reset. Each transition of the system might
reset some of the clocks, and has an associated enabling condition (EC) which
is a constraint on the values of the clocks. A transition is enabled only if its
corresponding state is reached and the current clock values satisfy its enabling
condition.

4 Test Sequence Mutation

The purpose of our testing method is to check how the system reacts to haz-
ards, and consequently to some stressful situations. A hazard could be defined
as any unexpected event from the environment. In our study we handle external
hazards. External hazards are modeled as actions received by the system or erro-
neous timing constraints. The automatic generation and integration of hazards
in the test sequences can be respectively found in [14] and [15].

Each component of the RTCBS is described by a nominal and a degraded
specification. Each of these specifications is represented by input-complete, re-
duced, strongly connected timed input-output automata TIOA.

160 H. Fouchal, A. Rollet, and A. Tarhini

For each component, we derive a test sequence for each controllable state.
The generation method uses the test purpose technique [16]. The generated
test sequences start with an input event and end with output event. For each
controllable state we derive a sequence able to characterize this state among all
others.

A state s of a TIOA is said controllable, if all reached states by s are connected
to it by transitions labelled by only input actions.

Fig.1 shows an example of a nominal specification with initial state s1 and
a degraded specification with initial state s′

1. A transition is represented by an
arrow between two states and labeled by (action; EC; Cs). The set of actions
A={?temperatureReq,!temperature,?posReq,!pos,?moveMode,?endMoveMode}
and the set of states S={s1, s2, s3, s4} and S’={s′

1, s
′
2, s

′
3}

?temperatureReq

!temperature

!pos

?posReq

x:=0
y<240

y:=0

x<600

S1

S2 S3

S4

?endMoveMode ?moveMode

(a) Nominal spec.

S1’

S3’S2’

?temperatureReq

!temperature

x’<600

x’:=0 !pos

?posReq
y’:=0

y’<300

(b) Degraded spec.

Fig. 1. A nominal and a degraded specification

4.1 Hazard Injection

Hazards are inserted in the generated test sequences to simulate a hostile envi-
ronment.

In fact, we will modify only some input actions in test sequences. Since we
check the ability of the system to react correctly in presence of relevant actions,
we do not allow to modify any input action of the degraded specification.

Suppose that M = (S, A, C, T, s0) is the nominal specification, and M ′ =
(S′, A′, C ′, T ′, s′

0) is the degraded one.
The designer decides which scenario he wants to integrate in a sequence based

on some previous experiences. He may have already a collection of known scenari
of non expected events from the environment. The insertion may be done auto-
matically based on a probabilistic choice or manually. Let T = {Tr1.T r2...T rn}
this sequence, where each Tri from M . Let T ′ = {Tr′

1.T r′
2...T r′

n′} the mutated
sequence. In the following we detail the most well known situations:

1. Replacing an input action
We simulate the fact that another component sends an unexpected action to
the tested component. The designer chooses a transition Tri = (ai; ECi; Csi)

Robustness of Composed Timed Systems 161

of T such that ai ∈ AI − A′
I . Then we change the action ai with an action

a′ ∈ AI−A′
I . Thus, the result T ′ is T ′ = {Tr1.T r2... T ri−1.T r′

i.T ri+1...T rn}
with Tr′

i = (a′; ECi; Csi).
2. Changing the instant of an input action occurrence

Here, we simulate the fact that another component sends the expected
action, but not at the right moment. This could happen for example in
case of heavy CPU processing. The designer chooses a transition Tri =
(ai; ECi; Csi) of T such that ai ∈ AI − A′

I and such that ECi is bounded.
Then we change the enabling condition ECi with EC ′ such that EC ′ is the
complementary of ECi. In fact, we just delay the occurrence of the transi-
tion with an amount of time δ, such that the occurrence arrives later than
expected. Thus, the result T ′= {Tr1.T r2... T ri−1.T r′

i.T ri+1...T rn} where
Tr′

i = (ai; EC ′; Csi).
3. Exchanging two input actions

We simulate the situation where other components have scheduling trou-
bles. The designer chooses two transitions Tri = (ai; ECi; Csi) and Trj =
(aj ; ECj ; Csj) of T such that ai ∈ AI − A′

I and aj ∈ AI − A′
I . Then we ex-

change the actions ai and aj . Thus, the result T ′ is T ′ = {Tr1.T r2...T r′
i...T r′

j

...T rn} with Tr′
i = (aj ; ECi; Csi) and Tr′

j = (ai; ECj ; Csj).
4. Adding an unexpected transition

Here, we simulate the fact that a component of the whole system sends an
unexpected additional action. This may be caused for example by some trou-
bles with any sensor. The designer chooses a transition Tri = (ai; ECi; Csi)
of T such that ai ∈ AI . He also chooses an action b ∈ AI − A′

I . We will
add a transition in the sequence with the input action b without changing
the timing conditions of the whole sequence. In fact, we insert the new ac-
tion respecting the timing conditions allowed for Tri. Finally the resulting
sequence becomes:
T ′ = {Tr1.T r2...T ri−1.T r′.T r′

i.T ri+1...T rn} with Tr′ =(b; EC ′;−) such that
EC ′ ⊂ ECi and Tr′

i =(ai; ECi; Csi)
5. Removing a transition

In this part, we simulate the fact that an information is lost in the system.
This could happen for many reasons, such that a problem in communication
channels. The designer chooses a transition Tri = (ai; ECi; Csi) of T such
that ai ∈ AI − A′

I and we just remove it from the sequence. Thus the the
resulting sequence becomes: T ′ ={Tr1.T r2...T ri−1.T ri+1...T rn}.

5 Test Execution

Fig. 2 illustrates the test architecture we use. It consists of a set of distributed
local testers. For each component, Pm, of the system, a dedicated Tester, Tm,is
assigned. Each tester is also detailled with its modules : TEU (Test Executer
Unit) and TMU (Test Monitor Unit).

This part is inspired by the work done in [17] dedicated to an adapted test
architecture for distributed timed systems.

162 H. Fouchal, A. Rollet, and A. Tarhini

ioQ1

Tstr1

Cmp P1

Monitor

Test

Executer

Test

specification
degraded−timed Mutated−timed

test sequence

(a) unit tester

P1 P2

T1 T2

ioQ1 ioQ2 ioQn

Pn

Tn

Tester

(b) main architecture

Fig. 2. Test Architecture

5.1 Tester Coordination

Components communicate with each other through their corresponding testers.
An output from component Pi to component Pj is achieved by sending the
output to tester Ti which in turns sends to tester Tj , next, Tj forwards the
output to Pj . In this model we ignore the time taken by the communication
between components through testers (we only cnsider the amount of time taken
by direct component communication).

Testers communicate with each other through the input/output queues (ioQ).
The output transition from tester Ti, sent as an input, to tester Tj will wait
on queue ioQj until this transition is enabled in Tj . On the other hand, the
execution of a communication test sequence CTsj by tester Tj will pause if this
test sequence requires Pj to wait on an input from component Pi. The execution
in tester Tj will resume after receiving the needed input from tester Ti; and thus,
testers give a higher priority to handle inputs received from the components over
inputs received from other testers that are stored in local testers’ queues.

In order to cover time space, for any input action,”?A”, the corresponding
tester sends ”A” as soon as the enabling condition EC of A satisfies the instant
”t” reached by the local tester’s clock, and another experiment is performed at
the latest instant satisfying EC.

5.2 Test Execution Algorithm

The testing execution process is done in two phases. The first phase tests the
robustness of each component separately, and the second phase tests the robust-
ness of communication among components.

In both phases, each tester Tm executes, using TEU, the corresponding mu-
tated test sequences and records, using TMU, the corresponding feedbacks from
each component into execution traces without instantaneous evaluation. We
check the robustness of each recorded execution trace from each component
with its corresponding degraded specification. The theoretical framework of this
issue is described in [18]

Robustness of Composed Timed Systems 163

In the first phase, we ignore all communication requests from other com-
ponents; and thus, all input actions from testers are sent at the instant where
those inputs are needed in the nominal specification SPm without considering
the communication from any other tester Ti , and therefore, here we are checking
the robustness of the component in isolation, without taking any communication
input from other components.

An execution of a mutated test sequence Tsmby Tm gives a verdict success,
iff, in its corresponding recorded execution trace, the reception of outputs from
Pm are accepted in the degraded specification SPm

d .
In the second phase, all testers Tm execute, using TEU, the same communica-

tion test sequence ITs generated from the communication nominal specification.
Tester Ti executes only its corresponding events (transitions) in ITs ignoring all
transitions for other testers. An execution of tester Tm to a communication test
sequence ITsm gives a verdict success, iff , in its corresponding recorded execu-
tion trace, the sending of inputs and reception of outputs OTi

m from Pm or Ti are
accepted in the communication degraded specification SCm

d .

Algorithm 1 : Test execution
This code is executing on component / tester indexed ”m”.
Input: SPm Test sequences: Tsm, ITsm ; ITsm initially is empty
Output: verdict pass, fail: set of failed components.

Phase 1:

1 For all components Pm

2 For all test sequences Tsm

3 Select a test sequence Tsm
j

4 Respecting timing constraints, apply each event of Tsm
j

via tester Tm to Pm.
5 Record the inputs and the corresponding feedbacks into traces

for each component.
6 Check the acceptR of each recorded trace with its degraded specification
7 Assign the appropriate verdict (Robust — NonRobust)

Phase 2:

9 For all components:
This code is executing on component / tester indexed ”m”.
10 For all test sequences ITsm

11 Select a test sequence ITsm
j from ITsm

12 For all transitions Trk of ITsm
j

13 If (current event of ITsm
j is a local transition:Trm

k)
14 Respecting timing constraints, Tm applies current event

of ITsm
j on component Pm.

15 Record the inputs and the corresponding feedbacks into traces
for each Pm,

164 H. Fouchal, A. Rollet, and A. Tarhini

taking into consideration the update of enabling conditions
with time delays.

16 Tm forwards the appropriate output of OTi
m to io-queue ioQi

of tester Ti.
17 If (tester Ti is waiting on this input)
18 Tester Tm Signals Tester Ti to resume execution:signal(Ti).
19 else if current event is not local transition: Tri

k

20 if transition Tri
kis found in (already sent to) current local queue ioQm

21 Respecting timing constraints, of Tri
k, Tm applies Tri

k to Pm.
22 Record the corresponding traces for each component.

taking into consideration the update of enabling
conditions with time delays.

23 else if the other tester Ti is not waiting on an input from this tester
24 pause execution of Tm until it gets input from Ti: wait (Tm).
25 else if (the other tester Ti is waiting on an input from this tester Tm)
26 Supply Tm with the appropriate input from SPm

to be applied on Pm.
27 Record the corresponding traces for each component taking into

consideration the update of enabling conditions
with time delays. Identify a deadlocks state on test sequence ITsm

j .
28 Signal all testers waiting on Tm.
29 Check the acceptR of each recorded trace with the degraded .

specification of the corresponding component.
30 Assign the appropriate verdict (Robust — NonRobust)

Comments on the algorithm First phase is locally testing robustness of each
component and also identifies interoperable sequences. In the second phase, each
tester Tm selects one of its sequences in ITsm, and applies it, while the other
testers parallely do the same with other sequences. At the end of the algorithm,
all the possible combinations of sequences has been tested. Supposing that each
tester has an average of k sequences, and N components, this gives about kN

test cases.
For each output transition of sequence ITsm, tester Tm has to send this action

to the corresponding tester, and eventually to signal it resuming of execution.
If it is an input, the tester identifies if it comes from the environment or from
a tester. In the last case, Tm applies the corresponding action only an other
componant has already sent this action to Pm.

If a tester Ti is waiting on an input from Tj , it pauses the execution until the
corresponding action arrives. However, if tester Ti is waiting on an input from
Tj and reciproqually, then a deadlock case is identified.

6 Conclusion and Future Work

Robustness testing for real-Time component-based systems is discussed in this
paper. To the best of our knowledge, quite a few works has been done in this

Robustness of Composed Timed Systems 165

field. In this paper, we present a methodology for testing robustness of real-time
component-based systems using fault injection and adequate distributed test
architecture. Each component is described by its nominal specification and its
degraded one. Three main contributions are noticeable in this method:

The first is the automatic generation of test sequence set for each compo-
nent from its nominal specification. Then relevant faults are inserted in these
sequences in order to simulate hostile environment.

The second contribution is that by the end of the first phase of the test execu-
tion, we are able to tell about all robust-implemented stand-alone components.
In this phase, we experiment mutated test sequences on each component of the
IUT and we record the results traces. These later are checked on the degraded
specification. Each component is said to be robust if the verdict of experimen-
tation of recorded traces on the degraded specification gives the verdict success.

A third contribution is the test-execution algorithm that executes and syn-
chronizes test sequence execution on local testers. The synchronization is done
via two atomic statements, Signal() and Wait(), and a set of input-output queues.
A queue is attached to each tester. The robustness of the whole IUT is deduced
if the communication events between components are accepted by the degraded
specifications of all components.

As a future work, we intend to investigate more realistic hazard insertion by
using metrics produced by real case studies. We need also to experiment this
methodology in a real case study such as industrial control software or complex
embedded systems.

We intend to use other real-time modeling languages as UML-RT or state-
charts to describe RTCBS. We will reduce the state explosion problem inherent
to the timed automata model.

References

1. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is so
hard. IEEE software (1995)

2. Khoumsi, A.: Timing issues in testing distributed systems. In: 4th IASTED Inter-
national Conference on Software Engineering and Applications, SEA2000, Novem-
ber 2000. (2000)

3. Bertolino, A., Corradini, F., Inveradi, P., Muccini, H.: Deriving test plans from
architectural descriptions. In: ACM Proceedings, International Conference on Soft-
ware Engineering ICSE2000, June 2000. (2000)

4. Zimmerer, P.: Test architectures for testing distributed systems. In: 12th Interna-
tional software quality week (QW’99), May 1999. (1999)

5. Schmidt, H.: Trustworthy components-compositionality and prediction. The Jour-
nal of Systems and Software 65 (2003) 215–225

6. Zalewski, J.: Developing component-based software for real-time systems. In:
27th Euromicro Conference 2001: A Net Odyssey (euromicro’01), September 2001.
(2001)

166 H. Fouchal, A. Rollet, and A. Tarhini

7. Tesanovic, A., Nystrom, D., Hansson, J., Norstrom, C.: Towards aspectual
component-based development of real-time systems. In: Proceeding of the 9th
International Conference on Real-Time and Embedded Computing Systems and
Applications (RTCSA 2003), February 2003. (2003)

8. Barton, J.H., Czeck, E.W., Segall, Z.Z., Siewiorek, D.P.: Fault injection experi-
ments using fiat. IEEE Trans. Comput. 39 (1990) 575–582

9. Tsai, T.K., Iyer, R.K., Jewitt, D.: An approach towards benchmarking of fault-
tolerant commercial systems. In: Symposium on Fault-Tolerant Computing. (1996)
314–323

10. Kropp, N.P., Jr., P.J.K., Siewiorek, D.P.: Automated robustness testing of off-the-
shelf software components. In: Symposium on Fault-Tolerant Computing. (1998)
230–239

11. Castanet, R.: Les enjeux du test de robustesse. In: Journées du Réseau Thématique
Prioritaire SECC. (2002)

12. Brinksma, E., Coulson, G., Crnkovic, I.: (Project ist-2001-34820 - artist- advanced
real-time systems. roadmap: Component-based design and integration platforms)
http://www.systemes-critiques.org/ARTIST/.

13. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science
126 (1994) 183–235

14. Fouchal, H., Rollet, A.: Embedded system testing. In: Proceedings of 7th Interna-
tional Conference on Principles of Distributed Systems (OPODIS 2003), December
10-13 2003, La Martinique, France. Lecture Notes in Computer Science, Springer-
Verlag (2003)

15. Rollet, A.: Testing robustness of real-time embedded systems. In: Proceedings of
Workshop On Testing Real-Time and Embedded Systems (WTRTES), Satellite
Workshop of FM 2003 Symposium, Pisa, Italy - September 13, 2003. (2003)

16. Fouchal, H., Petitjean, E., Salva, S.: An User-Oriented Testing of Real Time
Systems. In: Proceedings of the International Workshop on Real-Time Embeded
Systems RTES’01 (London), IEEE Computer Society. (2001)

17. Khoumsi, A.: Testing distributed real-time systems in the presence of inaccurate
clock synchronization. Journal of Information Soft. Technology (IST) 45 (2003)

18. Tarhini, A., Rollet, A., Fouchal, H.: A pragmatic approach for robustness testing
on real time component based systems. In: The 3rd ACS/IEEE International
Conference on Computer Systems and Application (AICSSA05), January 2-5 2005,
Cairo, Egypt. (2004) accepted.

Topology Generation for Web Communities
Modeling�

György Frivolt and Mária Bieliková

Institute of Informatics and Software Engineering,
Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava,
Ilkovičova 3, 842 16 Bratislava, Slovakia

{frivolt, bielik}@fiit.stuba.sk

Abstract. In this paper we present a model of Web communities which
constitute a part of the Web structure. The proposed model is aimed at
characterization of the topology behind the Web communities. It is in-
spired by small world graphs that show behaviors similar to many natural
networks. We model Web communities as clusters of Web pages using
graph grammars. Graph grammars allow us to simulate the structural
properties of Web communities including their growth and evolution. An
example of a grammar is presented. We discuss possibilities for utiliza-
tion of the proposed model for research into Web communities, their
properties and identification.

1 Introduction

As the Web grows, effective searching for information becomes more and more
important. Present Web search engines typically crawl the Web pages in order to
build indexes and/or local copies for further analysis. The search is based mainly
on analysis of the content gathered. Several search engines use the hyperlink
structure to provide additional information regarding the quality of the results
(using for example the PageRank algorithm [13]). Knowledge of the structure of
the Web graph dramatically improves the search results, in particular ranking of
the search results. However, most current search engines consider the Web as a
network at a rather low level of abstraction in which the vertices represent Web
pages and the edges are associated with hyperlinks that connect the information
content of the pages. To capture the features of the Web at a higher level of
abstraction, considering a collection of Web pages created by individuals, or
any kind of associations that have a common interest on a specific topic (web
communities), instead of the Web pages per se, is a challenging task. However,
it would enable reasoning at a higher level of abstraction, with the potential for
improving the efficiency and accuracy of the information search, and also for
improving the search results.

� This work has been partially supported by the Grant Agency of Slovak Republic
grant No. VG1/ 0162/03.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 167–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 G. Frivolt and M. Bieliková

Groupings can be observed in various natural networks. People, companies,
etc., which form collections (or clusters) represented by vertices, are often de-
noted as communities. Edges represent interactions such as social relations be-
tween people in a social network, or trade relationships in a business network.
Communities exist not only in the physical world. Research into the Web showed
that they emerge in the virtual world as well [7].

Since it is our intention to model communities on the Web, we concentrate
on clusters formed by Web pages. The primary understanding of the Web com-
munities comes from sociology [10]. Similar to the connections found in human
society, there exist connections between Web pages created by those who share a
common interest (so that the content of the pages is oriented towards a specific
topic).

We distinguish two main sources of knowledge that can be extracted from
the Web: (i) the Web page content, and (ii) the topology of the network. There
is a growing amount of work directed at the identification of Web communities
according to the topology of the network based on hyperlink structure, i.e., it is
supposed that Web pages which share similar themes, or similar interests of the
authors, are interconnected, or that they belong to the same cluster [5, 4, 12].
Due to the large size of the Web, the topology of the Web network is largely
unknown or unexplored. A significant step towards using the topology of the
Web for reasoning about its content is the PageRank algorithm [13]. The idea
behind PageRank is that it is possible to extract the quality of a Web page
based on the references (or hyperlinks) leading to it, i.e., from its position on
the network. A different method, but one still relying on topology, is introduced
by Jon Kleinberg [5, 6]. In [7, 10] the authors show structures observable on the
Web and explain the motivations for searching among communities on the Web.

Our aim is to define a model which captures the concept of Web communities.
The proposed model is tested by constructing an example of a grammar and
analyzing selected properties of the graphs generated according to the defined
grammar. In a way similar to the approaches mentioned above we rely on the
topology of the Web network and assume that the quality of the Web page
content is correlated with the incoming/outgoing links of the page.

The rest of the paper is structured as follows. In section 2 we describe small-
world graphs, which form a viable alternative for Web modeling. Section 3 dis-
cusses the proposed model based on the graph grammar system. In Section 4 we
give an example of a grammar together with generated graphs. The properties
of the generated graphs are described. The paper concludes with a discussion, a
summary, and a description of future directions of our research.

2 Small-World Graphs and Web Networks

Different types of natural networks share some specific features. Despite their
random character the topology of the graphs representing these networks has
a number of universal scale-free characteristics and displays a high degree of
clustering. The graphs show the so called small-world effect, possessing aver-

Topology Generation for Web Communities Modeling 169

age vertex-to-vertex distances which increase only logarithmically with the total
number of vertices, together with a clustering effect (which is missing in a random
graph) [11]. Small-world networks can be observed in many spheres of nature.
The networks of neurons in the brain, genetic networks, social networks of peo-
ple, networks of words in natural languages, the Internet at the router or domain
levels, and networks of Web pages, all share the features mentioned [14, 9, 2].

Ordered and random networks differ in two seemingly opposed ways. Ordered
networks exhibit high clustering, i.e., neighboring vertices share several common
neighbors. On the other hand, the average distance between any two vertices
in an ordered network is high. Random networks show significant differences
from ordered networks in these two properties. The growth of a random network
with a given coordination number (average number of neighbors of each vertex)
results in a decrease of the number of common neighbors. Furthermore, any two
vertices can be connected by a relatively short path.

The difference in scale between ordered and random networks is large. Models
for scaling the transition from ordered to random networks are studied in [11, 15].
Networks called small-world networks share the interesting properties of both
random and ordered networks: high levels of clustering and low relative distances
between the vertices. These properties for small-world networks are as follows.

Average Vertex Distance. The average distance � between any two vertices in a
small-world network logarithmically depends on the size N of the network:

� ≈ log (N)

Logarithmic dependence allows the average distance between the vertices to
be quite small even in very large networks. The precise definition of the average
distance between vertices in a small-world network is still a matter of debate,
but it is accepted that � should be comparable with the value it would have on
a random graph [11].

Clustering. Vertices in the same area are connected to each other. The clustering
coefficient Cv for a vertex v with kv neighbors is

Cv =
2Ev

kv(kv − 1)

where Ev is the number of edges between the kv neighbors of v.
Empirical results indicate that Cv averaged over all nodes is significantly

higher for most real networks than for a random network, and the clustering
coefficient of real networks is to a high degree independent of the number of
nodes in the network [14].

Several authors have studied big portions of the Web network (with vertices
representing the Web pages and connections representing hyperlinks pointing
from one page to another) and demonstrated its small-world properties. In [11, 2]
the average diameter for a Web network with N = 8 ∗ 108 vertices is shown to
be �web = 18.59, i.e., two randomly chosen pages on the Web are on average

170 G. Frivolt and M. Bieliková

19 clicks away from each other. The logarithmic dependence of average distance
between the Web pages on the number of the pages is important to the future
potential for growth of the Web. For example, the expected 1 000% increase in
the size of the Web over the next few years will change �web to only 21 [2].

3 Web Topology Generation Using Graph Grammars

As already mentioned, the Web graph shows the characteristics of a scale-
free network. However, empirical measurements have also shown its hierarchical
topology [14]. The modular organization of the Web is related to the high clus-
tering coefficient. The Web model should reflect these characteristics.

We have proposed to model this kind of the pattern using graph generat-
ing L-systems. L-systems are a class of string rewriting mechanisms, originally
developed by Lindenmayer [8] as a mathematical theory of plant development.
With an L-system, a sequence of symbols (string) can be rewritten into another
sequence, by replacing all symbols in the string in parallel by other symbols,
using so-called rewriting rules (also called production rules).

L-systems are capable of generating fractal-like structures. Self-similarity was
observed also in the Web [3]. General properties of the Web topology discussed in
Section 2 can also be found in its parts. We expect that the proposed approach is
also capable of generating networks that capture the growth of the Web, together
with its Web communities large scale topology with the properties of scale-free
networks with a high clustering.

Definition 1. We call a tuple Gr = (R, σ) a graph generating L-system, where
σ is the initial graph and R is the finite set of production rules written in the
form LHS → RHS.

The production rules of a graph grammar are mappings of the vertices. The
application of a production rule to a vertex of the graph means replacing the
vertex with the vertices defined on the right hand side of the rule. We do not
distinguish between terminal and non-terminal states.

The LHS of a graph generation rule represents a vertex. The RHS of the rule
consists of (a) a list of vertices together with related mappings of edges incident
to these vertices and the LHS vertex, and (b) a list of edges joining the mapped
vertices defined in the RHS.

Definition 2. We denote a production rule as:

v →

⎧⎨
⎩

(v1, μ1, p1),
(v2, μ2, p2),
. . .

⎫⎬
⎭ , η

where
pi ∈ [0, 1] is probability of mapping the vertex v to vi;
μi ∈ [0, 1] is probability of overtaking an incident edge to the vertex v and vi;
η is a subset of edges joining the vertices vi ∈ {v1, v2, . . .} such that

Topology Generation for Web Communities Modeling 171

η ⊂ {(ov, iv, p)|ov, iv ∈ {v1, v2, . . .} , p ∈ [0, 1]} .

where p is probability of generating an incident edge to the vertex ov and iv.

An L-system grows the graph starting with the initial graph by applying
production rules. The rule application means a replacement of a vertex with the
vertices mapped by the right hand side of the rule. The rule application is called
an expansion.

Definition 3. Let r ∈ R be a production rule, G a graph, v ∈ G(V) a vertex,
and e1, e2, . . . ∈ G(E) edges incident to the vertex v. We call an expansion a
mapping:

ApplyRule : G×G(V)×R �→ G
′

The result of the application of ApplyRule(G, v, r) = G
′
is:

G
′
(V) = (G(V) \ {v}) ∪ {p1(v1), p2(v2), . . .}

G
′
(E) = {μ1(e1), μ1(e2), . . . , μ2(e1, . . .), . . .} ∪ η(v1, v2, . . .)

where
pi : {vi} �→ {vi,⊥}, μi : {ei} �→ {ei,⊥} is a mapping giving items from the set
{v1, . . .}, {e1, . . .} with probability pi, resp. μi;
η is deduced from pi as η : 2{pi(v1),...} �→ {outv, inv|outv, inv ∈ {p1(v1), . . .}}.

The graph grows by repeated expansion. The inference step in a grammar is
executed by the application of randomly chosen rule on every vertex.

Definition 4. Let R be a set of rules, and G1 and G2 graphs. We say that G2
is inferred from G1 if a sequence s = (v1, r1), (v2, r1), . . . (vn, rn) exists, where

– ∀v ∈ G1(V)∃i ≤ n∃r ∈ R : si = (v, r) and ∀i, j ≤ n, i �= j : v(si) �= v(sj) 1

–
∐n

i=1 ApplyRule(G1, si) = G2
2

G1
��RG2 denotes that G2 was inferred from G1 in one inference step using R. If

there exists a sequence of inference steps G1
��RG2, G2

��RG2, . . . Gn−1
��RGn,

we say that Gn can be inferred from G1 and denote it as G1�RGn.

We note that every vertex is mapped during one inference step once and only
once. Finally we define the language generated by a grammar.

Definition 5. Let Gr = (R, σ) be a graph generating L-system. We call set of
graphs L a language generated by the grammar Gr if every graph contained in
L can be inferred from the initial graph σ using the rules from the finite set R:
L = {G|σ�RG}.

1 v(si) is the first (vertex) item of the tuple.
2 ∐3

i=1 ApplyRule(G1, si) = ApplyRule(ApplyRule(ApplyRule(G1, s1), s2), s3)

172 G. Frivolt and M. Bieliková

4 Graph Grammar Application

We have used the proposed language in our experiments to generate a topology
with properties similar to the Web network. Our approach is demonstrated by a
simple grammar containing three rules. We measure two properties of the gen-
erated graphs: the clustering coefficient and the graph diameter. We show that
the formalism presented in the previous section is strong enough to generate
graphs with properties that resemble small-world networks. Although the gener-
ated graphs are directed, in our measurements of the clustering coefficient and
network diameter we consider them as undirected, which suffices for the pur-
poses of evaluating the characteristics of the generated graphs. We developed
a software prototype for graph generation using the specified grammar, in the
Python programming language. The visualization of the generated graphs was
performed by the BioLayout software3.

4.1 Definition of the Example Grammar

The example grammar contains three rules generating three kinds of structures:

– hierarchies: a vertex is mapped to one central and several child vertices;
– bipartite graphs: generated vertices are divided into two sets such that no

edge connects vertices in the same set;
– cliques: a vertex is mapped to the graph where a majority of vertices is

connected.

Fig. 1 shows examples of the first expansion of each rule: a hierarchy with
three child vertices, a bipartite structure with two sets by three vertices and a
five clique cluster. Fig. 2 presents graphs generated by several expansions using
again each rule. The grammar of every example produces graphs from an initial
graph of a single vertex: Gr = (R, σ = G({v} , ∅)). The rules R are defined
thereinafter.

Fig. 1. Illustration of one expansion for (a) hierarchy, (b) bipartite structures and
(c) cliques

Hierarchies. Hierarchical organization can be observed in several real complex
networks including the Web. A graph theoretical discussion related to the fact
that the hierarchy is a fundamental characteristic of many complex systems can
be found in [14].

3 http://www.ebi.ac.uk/research/cgg/services/layout/

Topology Generation for Web Communities Modeling 173

Fig. 2. Structures generated by the hierarchy production rule after 4 inference steps
(a), bipartite (b) and clique (c) generation rule after 2 inference steps

An example of a hierarchy generation rule is defined as follows:

v →

⎧⎪⎪⎨
⎪⎪⎩

(vcentral, 1.0, 1.0),
(vchild1 , 0.2, 0.8),
(vchild2 , 0.2, 0.8),
(vchild3 , 0.2, 0.8)

⎫⎪⎪⎬
⎪⎪⎭ ,

⎧⎨
⎩

(vcentral, vchildi
, 0.8),

(vchildi
, vcentral, 0.2),

(vchildi
, vchildj

, 0.2)|i, j ≤ 3, i �= j

⎫⎬
⎭

The hierarchy generation rule of our grammar produces a structure containing
one central and a maximum of three child vertices. The central vertex is with
high probability connected with the child vertices. We set a lower probability for
generating connections between the child vertices.

The graph generated by four inference steps has a clustering coefficient of
0.475. The diameter of the largest component is 8, and the total number of
vertices and edges is 93 and 169, respectively (see Fig. 2a).

Bipartite Graphs. Bipartite structure models service-provider relationships,
which occur on the current Web quite often. Web communities in this case are
formed implicitly, i.e., the community is formed by unconnected vertices (an
actual example of this is where providers’ pages on similar topics do not provide
links to each other).

The rule defined below generates a bipartite graph K3,3. The clustering coef-
ficient of the structure after the first expansion is 0. The clustering remains low
after two inference steps. The graph in Fig. 2b has clustering coefficient 0.111.

v →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(vservice1 , 0.3, 0.8),
(vservice2 , 0.3, 0.8),
(vservice3 , 0.3, 0.8),
(vcustomer1 , 0.3, 0.8),
. . .
(vcustomer5 , 0.3, 0.8)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

{
(vservicei

, vcustomerj , 0.8),
(vcustomerj , vservicei , 0.8)|i ≤ 3, j ≤ 5

}

174 G. Frivolt and M. Bieliková

Cliques. The clique structure models mutually interconnected Web pages. This
kind of structure can be found, for example, in Web portals such as corporate
Web sites or home pages. An example of a clique generation rule is defined as
follows:

v →

⎧⎪⎪⎨
⎪⎪⎩

(v1, 0.6, 0.8),
(v2, 0.6, 0.8),
. . .
(v5, 0.6, 0.8)

⎫⎪⎪⎬
⎪⎪⎭ , {(vi, vj , 0.8)|i, j ≤ 5, i �= j}

The clustering coefficient of the graph in Fig. 2c generated by two inference
steps is 0.619.

4.2 Mixed Structures

We have generated various mixed structures using a grammar consisting of the
three rules defined above. The rules are applied randomly, each vertex is mapped
by one of the three rules in every step of inference. Two exampes of graph
evolution are illustrated in Fig. 3. The measured values are listed in Tab. 1.

Fig. 3. Illustration of graph evolutions. Evolution of the graph I is started by a clique
structure, whereas graph evolution II starts as a hierarchical structure. The initial
shape of the graph persists over the growth, however after several iterations the two
graphs become similar in shape and properties (see Tab. 1)

5 Discussion and Conclusions

The main contribution of this paper is to propose a formalism capable of mod-
eling the topology of Web communities. The results in Tab. 1 support our aim
to generate graphs with small-world effects. The clustering coefficient is much
higher than in random graphs. However, more experiments are needed in order
to tune the parameters defined within the production rules, or to define new
useful production rules that would improve the small-world characteristics of

Topology Generation for Web Communities Modeling 175

Table 1. Properties of generated graphs illustrated in Fig. 3/I in the first half and
fig. 3/II in the second half of the table

inf. steps |G(V)| |G(E)| clustering diameter avg. out deg. avg. in deg.
I-1 4 11 1.0 1 2.75 2.75
I-2 21 100 0.3657 3 5.0 4.76
I-3 81 423 0.3542 5 5.42 5.29
I-4 370 2 352 0.3254 7 6.60 6.44
I-5 1 719 11 997 0.2788 10 7.18 7.01
I-6 7 856 60 206 0.2744 14 7.88 7.73
II-1 4 4 0.5833 2 1.33 1.33
II-2 14 56 0.6418 4 4.31 4.31
II-3 71 371 0.2788 7 5.46 5.3
II-4 330 2 063 0.2844 9 6.47 6.29
II-5 1 519 10 852 0.2841 11 7.37 7.2
II-6 7 094 55 272 0.2841 14 8.01 8.85

the generated graphs. One such extension is to introduce edges between distant
vertices.

Naturally several directions for future work emerge. We give a list of possible
usages of the formalism presented in this paper.

Analysis of Graph Properties Based on the Rules. The results presented in Tab.1
show that although the initial properties of the graphs differ, after several it-
erations the resulting generated graphs have similar clustering coefficients and
diameters. These properties depend on the rules of the grammar. So we assume
that the properties can be computed without the inference of the graphs, which
can save considerable resources when experimenting with appropriate rules for
Web topology generation.

Modeling Interactions Between Web Pages. Currently we map only one vertex to
a set of the vertices. By mapping more vertices we could model also interactions
between Web sites. Such a model requires also modeling of attributes of the
Web pages and a definition of strategies for identification of those vertices, which
repose in the LHS of the rules. Although our current model produces expanding
graphs, a set of rules extended by the possibility of a definition of more vertices
on the RHS could also decrease the number of vertices or edges.

Definition of Scalable Models. Models introduced in [1, 11] are scalable. Similar
scale parameters can be introduced into the formalism proposed here. Tweaking
of these parameters would result in grammars with different properties.

Graph Pattern Recognition. The proposed formalism can be used for testing
or modeling some aspects of natural networks. A tool for generating networks
similar to natural ones can be useful for testing algorithms for identification of
the structure of the network, which was our main intention. However, another

176 G. Frivolt and M. Bieliková

aspect that we also found interesting was the recognition of patterns defined on
the RHS of grammar rules of a natural network. We expect to be able to identify a
network’s structure by working backwards through the inference sequence using
recognition of RHS patterns. This process is far from simple. We should at least
ensure the continuous backward chaining and effective recognition of isomorphic
graphs.

The proposed model extends classical L-systems by defining probabilities
of the mapping of vertices and edges. By not using exact patterns we hope to
decrease the complexity of the problem of computation. We believe that the work
presented in this paper can be of great help in the analysis of Web communities.
The characteristics of generated graphs are promising in the sense that they
possess similar properties to those expected of actual Web graphs. Generated
graphs could serve as a basis for identification of Web communities and their
use in searching for information and recommending of high quality.

References

1. Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286:509–512, October 1999. www.sciencemag.org.

2. Albert-László Barabási, Réka Albert, and Hawoong Jeong. Scale-free characteris-
tics of random networks: the topology of the World-Wide Web. Physica A, 281:69–
77, 2000.

3. Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan, D. Sivaku-
mar, and Andrew Tomkins. Self-similarity in the Web. 2:205–223, August 2002.

4. Gary Flake, Steve Lawrence, and C. Lee Giles. Efficient identification of Web
communities. In Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 150–160, Boston, MA, August 2000.

5. David Gibson, Jon M. Kleinberg, and Prabhakar Raghavan. Inferring Web com-
munities from link topology. In Proc. of the 9th ACM Conf. on Hypertext and
Hypermedia, pages 225–234, 1998.

6. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46:604–632, September 1999.

7. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagpalan, and Andrew Tomkins.
Trawling the Web for emerging cyber-communities. In Proc. of the 8th World
Wide Web Conference, pages 1481–1493, 1999.

8. Aristid Lindenmayer. Mathematical models for cellular interaction in development.
18:280–315, 1968.

9. Mária Markošová. Language as a small world network. In J. Kelemen and
V. Kvasnička, editors, Proc. of Conf. on Cognition and Artificial Life.

10. Pınar Yolum and Munindar P. Singh. Dynamic communities in referral networks.
Web intelligence and agent systems, 1:105–116, December 2003.

11. Mark E. J. Newman. Models of small world (a review). Physical Review Letters,
May 2000. cond-mat/0001118.

12. Mark E. J. Newman and Michelle Girvan. Finding and evaluating community
structure in networks. Physical Review Letters, 2004. cond-mat/026113.

13. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The Page-
rank citation ranking: Bringing order to the Web. Standford Digital Libraries,
Technologies Project, 1998.

Topology Generation for Web Communities Modeling 177

14. Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex
networks. Physical Review Letters, September 2002. cond-mat/0206130.

15. Duncan J. Watts. Small Worlds: The Dynamics of Networks between Order and
Randomness. Princeton University Press, 2003.

Recursion Versus Replication in
Simple Cryptographic Protocols

Hans Hüttel� and Jǐŕı Srba��

BRICS� � �, Department of Computer Science, University of Aalborg
Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

Abstract. We use some recent techniques from process algebra to draw
several conclusions about the well studied class of ping-pong protocols
introduced by Dolev and Yao. In particular we show that all nontriv-
ial properties, including reachability and equivalence checking wrt. the
whole van Glabbeek’s spectrum, become undecidable for a very simple
recursive extension of the protocol. The result holds even if no nonde-
terministic choice operator is allowed. We also show that the extended
calculus is capable of an implicit description of the active intruder, in-
cluding full analysis and synthesis of messages in the sense of Amadio,
Lugiez and Vanackère. We conclude by showing that reachability analysis
for a replicative variant of the protocol becomes decidable.

Note: full proofs are available in [11].

1 Introduction

Process calculi have been suggested as a natural vehicle for reasoning about cryp-
tographic protocols. In [1], Abadi and Gordon introduced the spi-calculus and
described how properties such as secrecy and authenticity can be expressed via
notions of observational equivalence (like may-testing). Alternatively, security
questions have been studied using reachability analysis [3, 5, 9].

We provide a basic study of expressiveness and feasibility of cryptographic
protocols. We are interested in two verification approaches: reachability analy-
sis and equivalence (preorder) checking. In reachability analysis the question is
whether a certain (bad or good) configuration of the protocol is reachable from
a given initial one. In equivalence checking the question is whether a protocol
implementation is equivalent (e.g. bisimilar) to a given specification (optimal
behaviour). These verification strategies can be used even in the presence of an
active intruder (in the Dolev-Yao style), i.e., an agent with capabilities to listen
to any communication, to perform analysis and synthesis of communicated mes-
sages according to the actual knowledge of compromised keys, and to actively

� hans@cs.auc.dk
�� srba@cs.auc.dk, supported in part by the GACR, grant No. 201/03/1161.

� � � Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 178–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Recursion Versus Replication in Simple Cryptographic Protocols 179

participate in the protocol behaviour by transmitting new messages. This can
be naturally implemented not only into the reachability analysis (see e.g. [4])
but also into the equivalence checking approach (see e.g. [10]).

A number of security properties are decidable for finite protocols [3, 14]. In
the case of an unbounded number of protocol configurations, the picture is more
complex. Durgin et al. showed in [8] that security properties are undecidable in
a restricted class of so-called bounded protocols (that still allows for infinitely
many reachable configurations). In [2] Amadio and Charatonik consider a lan-
guage of tail-recursive protocols with bounded encryption depth and name gener-
ation; they show that, whenever certain restrictions on decryption are violated,
one can encode two-counter machines in the process language. On the other
hand, Amadio, Lugiez and Vanackère show in [4] that the reachability problem
is in PTIME for a class of protocols with iteration.

In this paper we focus solely on ping-pong based behaviours of recursive and
replicative protocols (perhaps the simplest behaviour of all studied calculi) in
order to draw general conclusions about expressiveness and tractability of for-
mal verification of cryptographic protocols. The class of ping-pong protocols was
introduced in 1983 by Dolev and Yao [7]. The formalism deals with memory-less
protocols which may be subjected to arbitrarily long attacks. Here, the secrecy
of a finite ping-pong protocol can be decided in polynomial time. Later, Dolev,
Even and Karp found a cubic-time algorithm [6]. The class of protocols stud-
ied in [4] contains iterative ping-pong protocols and, as a consequence, secrecy
properties remain polynomially decidable even in this case.

In the present paper we continue our study of recursive and replicative exten-
sions of ping-pong protocols. In [12] we showed that the recursive extension of
the calculus is Turing powerful, however, the nondeterministic choice operator
appeared to be essential in the construction. The question whether the calculus
is Turing powerful even without any explicit way to define nondeterministic pro-
cesses was left open. Here we present a radically new reduction from multi-stack
automata and strengthen the undecidability results to hold even for protocols
without nondeterministic choice. We prove, in particular, that both reachabil-
ity and equivalence checking for all equivalences and preorders between trace
equivalence/preorder and isomorphism of labelled transition systems (which in-
cludes all equivalences and preorders from van Glabbeek’s spectrum [15]) become
undecidable. These results are of general importance because they prove the im-
possibility of automated verification for essentially all recursive cryptographic
protocols capable of at least the ping-pong behaviour.

In the initial study from [12], the question of active attacks on the protocol
was not dealt with. We shall demonstrate that a complete notion of the active
intruder (including analysis and synthesis of messages in the sense of Amadio,
Lugiez and Vanackère [4]) can be explicitly encoded into our formalism.

Finally, we study a replicative variant of the calculus. Surprisingly, such a
calculus becomes decidable, at least with regard to reachability analysis. We use
a very recent result from process algebra (decidability of reachability for weak
process rewrite systems by Křet́ınský, Řehák and Strejček [13]) in order to derive
the result.

180 H. Hüttel and J. Srba

2 Basic Definitions

2.1 Labelled Transition Systems with Label Abstraction

In order to provide a uniform framework for our study of ping-pong protocols,
we define their semantics by means of labelled transition systems. A labelled
transition system (LTS) is a triple T = (S,Act,−→) where S is a set of states
(or processes), Act is a set of labels (or actions), and −→⊆ S × Act × S is a
transition relation, written α

a−→ β, for (α, a,β) ∈−→. As usual we extend the
transition relation to the elements of Act∗. We also write α −→∗ β, whenever
α

w−→ β for some w ∈ Act∗.
The idea is that the states represent global configurations of a given proto-

col and the transitions describe the information flow. Labels on the transitions
moreover represent the messages (both plain-text and cipher-text) which are
being communicated during the state changes.

The explicit possibility to observe the full content of messages is sometimes
not very realistic; it means that an external observer of such a system can e.g.
distinguish between two different messages encrypted by the same encryption
key, without the actual knowledge of the key.

In order to restrict capabilities of the observer we introduce a so called label
abstraction function φ : Act �→ Act. Given a LTS T = (S,Act,−→T) and a
label abstraction function φ we define a new LTS Tφ

def= (S,Act,−→Tφ
) where

α
φ(a)−→Tφ

β iff α
a−→T β for all α,β ∈ S and a ∈ Act. We call Tφ a labelled

transition system with label abstraction.
Let us now focus on the messages (actions). Assume a given set of encryption

keys K. The set of all messages over K is given by the following abstract syntax

m ::= k | k ·m

where k ranges over K. Hence every element of the set K is a (plain-text) message
and if m is a message then k ·m is a (cipher-text) message (meaning that the
message m is encrypted by the key k). Given a message k1 · k2 · · · kn over K we
usually1 write it only as a word k1k2 · · · kn from K∗. Note that kn is the plain-
text part of the message and the outermost encryption key is always on the left
(k1 in our case). In what follows we shall identify the set of messages and K∗,
and we denote the extra element of K∗ consisting of the empty sequence of keys
by ε.

The level of abstraction we may select depends on the particular studied
property we are interested in. Nevertheless, it seems reasonable to require at
least the possibility to distinguish between plain-text and cipher-text messages.

1 In our previous work on ping-pong protocols [12] we denoted a message m en-
crypted by a key k as {m}k. We changed the notation in order to improve the
clarity of the proofs. In particular, when messages like k1k2 · · · kn are used, the
previous syntax described the keys in a reversed order, which was technically in-
convenient.

Recursion Versus Replication in Simple Cryptographic Protocols 181

We say that a label abstraction function φ is reasonable iff φ(k) �= φ(k′w) for all
k, k′ ∈ K and w ∈ K+.

2.2 A Calculus of Recursive Ping-Pong Protocols

We shall now define a calculus which captures exactly the class of ping-pong
protocols by Dolev and Yao [7] extended (in a straightforward manner) with
recursive definitions.

Let K be a set of encryption keys. A specification of a recursive ping-pong is
a finite set of process definitions Δ such that for every process constant P (from
a given set Const) the set Δ contains exactly one process definition of the form

P
def=

∑
i1∈I1

vi1 � .wi1�.Pi1 +
∑

i2∈I2

vi2 .Pi2 +
∑

i3∈I3

wi3 .Pi3

where I1, I2 and I3 are finite sets of indices such that I1 ∪ I2 ∪ I3 �= ∅, and
vi1 , vi2 , wi1 and wi3 are messages (belong to K∗) for all i1 ∈ I1, i2 ∈ I2 and
i3 ∈ I3, and Pi ∈ Const ∪ {0} for all i ∈ I1 ∪ I2 ∪ I3 such that 0 is a special
constant called the empty process. We moreover require that vi2 and wi3 for all
i2 ∈ I2 and i3 ∈ I3 are different from the empty message ε. (Observe that any
specification Δ contains only finitely many keys.)

Summands continuing in the empty process constant 0 will be written with-
out the 0 symbol and process definitions will often be written in their unfolded
form using the nondeterministic choice operator ‘+’. An example of a process
definition is e.g. P

def= k1� . k2�.P1 + k1� . k3� + k1k2.P1 + k1k1 + k1k2.P2.
The intuition is that each summand of the form vi1 � .wi1�.Pi1 can receive

a message encrypted by a sequence vi1 of outermost keys, decrypt the message
using these keys, send it out encrypted by the sequence of keys wi1 , and finally
behave as the process constant Pi1 . The symbol � stands for the rest of the
message after decrypting it with the key sequence vi1 . This describes a standard
ping-pong behaviour of the process. (Note that the symbol � is equivalent to
our {x} notation from [12]).

In addition to this we may have summands of the forms vi2 .Pi2 and wi3 .Pi3 ,
meaning simply that a message is received and forgotten or unconditionally
transmitted, respectively. This is a small addition to the calculus we presented
in [12] in order to allow for discarding of old messages and generation of new
messages. These two features were not available in the earlier version of the
calculus but they appear to be technically convenient when modeling an explicit
intruder and for strengthening the positive decidability results in Section 5.
Nevertheless, the undecidability results presented in Section 3 are valid even
without this extension since only the standard ping-pong behaviour is used in
the constructions. A feature very similar to the forgetful input operation can be
also found in [4].

A configuration of a ping-pong protocol specification Δ is a parallel compo-
sition of process constants, possibly preceded by output messages. Formally the
set Conf of configurations is given by the following abstract syntax

C ::= 0 | P | w.P | C ‖ C

182 H. Hüttel and J. Srba

where 0 is the empty configuration, P ∈ Const ∪ {0} ranges over process cons-
tants including the empty process, w ∈ K∗ ranges over the set of messages, and
‘‖’ is the operator of parallel composition.

We introduce a structural congruence relation ≡ which identifies configura-
tions that represent the same state of the protocol. The relation ≡ is defined as
the least congruence over configurations (≡⊆ Conf× Conf) such that (Conf, ‖,0)
is a commutative monoid and ε.P ≡ P for all P ∈ Const. In what follows we
shall identify configurations up to structural congruence.

Remark 1. We let ε.P ≡ P because the empty message should never be com-
municated. This means that when a prefix like k� .�.P receives a plain-text
message k and tries to output ε.P , it simply continues as the process P .

We shall now define the semantics of ping-pong protocols in terms of labelled
transition systems. We define a set ConfS ⊆ Conf consisting of all configurations
that do not contain the operator of parallel composition and call these sim-
ple configurations. We also define two sets In(C, m),Out(C, m) ⊆ ConfS for all
C ∈ ConfS and m ∈ K+. The intuition is that In(C, m) (Out(C, m)) contains
all configurations which can be reached from the simple configuration C after
receiving (resp. outputting) the message m from (to) the environment. Formally,
In(C, m) and Out(C, m) are the smallest sets which satisfy:

– Q ∈ In(P,m) whenever P ∈ Const and m.Q is a summand of P

– wα.Q ∈ In(P,m) whenever P ∈ Const and v� .w�.Q is a summand of P
such that m = vα

– P ∈ Out(m.P,m) whenever P ∈ Const ∪ {0}
– Q ∈ Out(P,m) whenever P ∈ Const and m.Q is a summand of P .

A given protocol specification Δ determines a labelled transition system
T (Δ) def= (S,Act,−→) where the states are configurations of the protocol mod-
ulo the structural congruence (S def= Conf/≡), the set of labels (actions) is the
set of messages that can be communicated between the agents of the protocol
(Act def= K+), and the transition relation −→ is given by the following SOS rule
(recall that ‘‖’ is commutative).

m ∈ K+ C1,C2 ∈ ConfS C ′
1 ∈ Out(C1, m) C ′

2 ∈ In(C2, m)

C1 ‖ C2 ‖ C
m−→ C ′

1 ‖ C ′
2 ‖ C

This means that (in the context C) two simple configurations (agents) C1
and C2 can communicate a message m in such a way that C1 outputs m and
becomes C ′

1 while C2 receives the message m and becomes C ′
2.

For further discussion and examples of recursive ping-pong protocols we refer
the reader to [12].

Recursion Versus Replication in Simple Cryptographic Protocols 183

2.3 Reachability and Behavioural Equivalences

One of the problems that is usually studied is that of reachability analysis: given
two configurations C1,C2 ∈ Conf we ask whether C2 is reachable from C1, i.e.,
if C1 −→∗ C2. In this case the set of labels is irrelevant.

As the semantics of our calculus is given in terms of labelled transition sys-
tems (together with an appropriate label abstraction function), we can also study
the equivalence checking problems. Given some behavioural equivalence or pre-
order ↔ from van Glabbeek’s spectrum [15] (e.g. strong bisimilarity or trace,
failure and simulation equivalences/preorders just to mention a few) and two
configurations C1,C2 ∈ Conf of a protocol specification Δ, the question is to
decide whether C1 and C2 are ↔-equivalent (or ↔-preorder related) in T (Δ),
i.e., whether C1 ↔ C2.

3 Recursive Ping-Pong Protocols Without Explicit
Choice

In this section we strengthen the undecidability result from [12] and show that
the reachability and equivalence checking problems are undecidable for ping-
pong protocols without an explicit operator of nondeterminism and using clas-
sical ping-pong behaviour only, i.e., for protocols without any occurrence of
the choice operator ‘+’ and where every defining equation is of the form P

def=
v� .w�.P ′ such that P ′ ∈ Const.

We moreover show that the negative results apply to all behavioural equiv-
alences and preorders between trace equivalence/preorder and isomorphism of
LTS (which preserves labelling) with regard to all reasonable label abstraction
functions as defined in Section 2.

These results are achieved by showing that recursive ping-pong protocols
can step-by-step simulate a Turing powerful computational device, in our case a
computational model called multi-stack machines.

A multi-stack machine R with � stacks (� ≥ 1) is a triple R = (Q, Γ,−→)
where Q is a finite set of control-states, Γ is a finite stack alphabet such that
Q ∩ Γ = ∅, and −→⊆ Q× Γ ×Q× Γ ∗ is a finite set of transition rules, written
pX −→ qα for (p, X, q, α) ∈−→.

A configuration of a multi-stack machine R is an element from Q× (Γ ∗)�. We
assume a given initial configuration (q0, w1, . . . , w�) where q0 ∈ Q and wi ∈ Γ ∗

for all i, 1 ≤ i ≤ �. If some of the stacks wi are empty, we denote them by ε.
A computational step is defined such that whenever there is a transition rule

pX −→ qα then a configuration which is in the control-state p and has X on
top of the i’th stack (the tops of the stacks are on the left) can perform the
following transition: (p, w1, . . . , Xwi, . . . , w�) −→ (q, w1, . . . , αwi, . . . , w�) for all
w1, . . . , w� ∈ Γ ∗ and for all i, 1 ≤ i ≤ �.

It is a folklore result that multi-stack machines are Turing powerful. Hence
(in particular) the following problem is easily seen to be undecidable: given an
initial configuration (q0, w1, . . . , w�) of a multi-stack machine R, can we reach

184 H. Hüttel and J. Srba

the configuration (h, ε, . . . , ε) for a distinguished halting control-state h ∈ Q such
that all stacks are empty? Without loss of generality we can even assume that a
configuration in the control-state h is reachable iff all stacks are empty.

Let R = (Q, Γ,−→) be a multi-stack machine. We define the following set of
keys of a ping-pong specification Δ: K def= Q ∪ Γ ∪ {kp | p ∈ Q} ∪ {t, k∗}. Here t
is a special key such that every communicated message is an encryption of the
plain-text key t. The reason for this is that it ensures that the protocol never
communicates any plain-text message. The key k∗ is a special purpose locking
key and it is explained later on in the construction.

We shall construct a ping-pong protocol specification Δ as follows.

– For every transition rule pX −→ qα we have a process constant PpX−→qα

with the following defining equation: PpX−→qα
def= pX� . kqα�.PpX−→qα.

– For every state p ∈ Q we have two process constants Tp and T ′
p.

Tp
def= kp� . k∗�.T ′

p

T ′
p

def= k∗� . p�.Tp if p ∈ Q � {h}, and T ′
h

def= h� .h�.T ′
h

Recall that h ∈ Q is the halting control-state.
– Finally, we define a process constant B (standing for a buffer over a fixed

key k∗): B
def= k∗� . k∗�.B.

In this defining equation the key k∗ locks the content of the buffer such that
it is accessible only by some T ′

p.

Note that Δ does not contain any choice operator ‘+’ as required.
Let (q0, w1, . . . , w�) be an initial configuration of the multi-stack machine

R. The corresponding initial configuration of the protocol Δ is defined as fol-
lows (the meta-symbol Π stands for a parallel composition of the appropriate
components).

(∏
(r,A,s,β)∈−→

PrA−→sβ

)
‖

(∏
p∈Q�{q0}

Tp

)
‖ T ′

q0
‖

(∏
j∈{1,...,�}

k∗wjt.B
)

(1)

The following invariants are preserved during any computational sequence
starting from this initial configuration:

– at most one T ′
p for some p ∈ Q is present as a parallel component (the

intuition is that this represents the fact that the machine R is in the control-
state p), and

– plain-text messages are never communicated.

Theorem 1. The reachability problem for recursive ping-pong protocols without
an explicit choice operator is undecidable.

Recursion Versus Replication in Simple Cryptographic Protocols 185

Theorem 2. The equivalence checking problem for recursive ping-pong proto-
cols without an explicit choice operator is undecidable for any behavioral equiv-
alence/preorder between trace equivalence/preorder and isomorphism (including
all equivalences and preorders from van Glabbeek’s spectrum [15]) and for any
reasonable label abstraction function.

4 The Active Intruder

In the literature on applying process calculi to the study of cryptographic proto-
cols, there have been several proposals for explicit modelling the active intruder
(environment). Foccardi, Gorrieri and Martinelli in [10] express the environment
within the process calculus, namely as a process running in parallel with the
protocol. In [4] Amadio, Lugiez and Vanackère describe a tiny process calculus
similar to ours, except that they use replication instead of recursion. Moreover,
the environment is described in the semantics of the calculus. Transitions are of
the form (C, T) → (C ′, T ′) where C and C ′ are protocol configurations and T
and T ′ denote the sets of messages known to the environment (all communication
occurs only by passing messages through these sets).

The environment is assumed to be hostile; it may compute new messages
by means of the operations of analysis and synthesis and pass these on to the
process. Let K be a set of encryption keys as before. The analysis of a set of
messages T ⊆ K∗ is the least set A(T) satisfying

A(T) = T ∪ {w | kw ∈ A(T), k ∈ K ∩A(T)}. (2)

The synthesis of a set of messages T ⊆ K∗ is the least set S(T) satisfying

S(T) = A(T) ∪ {kw | w ∈ S(T), k ∈ K ∩ S(T)}. (3)

We can now design an environment sensitive semantics for our calculus close
in style to that of [4]. We define the reduction relation→ by the following set of
axioms (here x ∈ P means that x is a summand in the defining equation of the
process constant P).

(P ‖ C, T)→ (wα.P ′ ‖ C, T) if (v� .w�.P ′) ∈ P and vα ∈ S(T) (A1)
(P ‖ C, T)→ (P ′ ‖ C, T) if (v.P ′) ∈ P and v ∈ S(T) (A2)

(w.P ‖ C, T)→ (P ‖ C, T ∪ {w}) (A3)
(P ‖ C, T)→ (P ′ ‖ C, T ∪ {w}) if (w.P ′) ∈ P (A4)

We show that this semantics can be internalized in our calculus within our ex-
isting semantics. The construction is nontrivial as (on the contrary with stronger
calculi like spi-calculus) we can use only a very limited set of operations. The
details are in the full paper.

Theorem 3. For any recursive ping-pong protocol, we can define its new parallel
component which enables all the attacks described by axioms (A1) – (A4).

186 H. Hüttel and J. Srba

5 Replicative Ping-Pong Protocols

In this section we shall define a replicative variant of our calculus for ping-pong
protocols. We will then show that this formalism is not Turing powerful because
the reachability problem becomes decidable.

Let us now define replicative ping-pong protocols. Let K be the set of en-
cryption keys as before. The set Conf of protocol configurations is given by the
following abstract syntax

C ::= 0 | v� .w� | v | w | !(v� .w�) | !(v) | !(w) | C ‖ C

where 0 is the symbol for the empty configuration, v and w range over K∗,
and ! is the bang operator (replication). As before, we shall introduce structural
congruence ≡, which is the smallest congruence over Conf such that (Conf, ‖,0) is
a commutative monoid; ε ‖ C ≡ C ≡ ε ‖ C; !(ε) ≡ 0 ≡ !(ε); and !(C) ≡ C ‖!(C).
A labelled transition system determined by a configuration (where states are
configurations modulo ≡ and labels are non-empty messages as before) is defined
by the following SOS rules (recall the replicative axiom !(C) ≡ C ‖!(C) and the
fact that ‘‖’ is commutative).

m ∈ K+

m ‖ m ‖ C
m−→ C

m ∈ K+ m = vα

m ‖ v� .w� ‖ C
m−→ wα ‖ C

We can now show that the reachability problem for general replicative ping-
pong protocols is decidable. We reduce our problem to reachability of weak
process rewrite systems (wPRS) which was very recently proven to be decid-
able [13].

Theorem 4. The reachability problem for replicative ping-pong protocols is de-
cidable.

6 Conclusion

We have seen that ping-pong protocols extended with recursive definitions have
full Turing power. This is the case even in the absence of nondeterministic choice
operator ‘+’. A result like this implies that any reasonable property for all richer
calculi cannot be automatically verified.

We also presented an explicit description of the active intruder in the syntax
of recursive ping-pong protocols.

Finally, we showed that reachability analysis for a replicative variant of the
protocol becomes feasible. Our proof uses very recent results from process alge-
bra [13] and can be compared to the work of Amadio, Lugiez and Vanackère [4]
which establishes the decidability of reachability for a similar replicative pro-
tocol capable of ping-pong behaviour. Their approach uses a notion of a pool
of messages explicitly modelled in the semantics and reduces the question to a
decidable problem of reachability for prefix rewriting. In our approach we allow

Recursion Versus Replication in Simple Cryptographic Protocols 187

spontaneous generation of new messages which is not possible in their calcu-
lus. Moreover, we can distinguish between replicated and once-only behaviours
(unlike in [4] where all processes have to be replicated).

Last but not least we hope that our approach can be possibly extended to
include other operations as the decidability result for replicative protocols uses
only a limited power of wPRS (only a parallel composition of stacks). Hence
there is a place for further extensions of the protocol syntax while preserving
a decidable calculus (e.g. messages of the form k1(k2 op k3)k4 for some extra
composition operation op on keys can be easily stored in wPRS as k1.(k2 ‖
k3).k4). Such a study is left for future research.

References

1. M. Abadi and A.D. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5(4):267–303, 1998.

2. R.M. Amadio and W. Charatonik. On name generation and set-based analysis
in the Dolev-Yao model. In Proc. of CONCUR’02, vol. 2421 of LNCS, 499–514.
Springer-Verlag, 2002.

3. R.M. Amadio and D. Lugiez. On the reachability problem in cryptographic pro-
tocols. In Proc. of CONCUR’00, vol. 1877 of LNCS, 380–394. Springer-Verlag,
2000.

4. R.M. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes
with cryptographic functions. TCS, 290(1):695–740, October 2002.

5. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proc. of
ICALP’01, vol. 2076 of LNCS, 667–681. Springer, 2001.

6. D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong protocols. Infor-
mation and Control, 55(1–3):57–68, 1982.

7. D. Dolev and A.C. Yao. On the security of public key protocols. Transactions on
Information Theory, IT-29(2):198–208, 1983.

8. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In N. Heintze and E. Clarke, editors, Proc. of FMSP’99, 1999.

9. M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic
protocols. In Proc. of CSFW’01, 160–173. IEEE, 2001.

10. R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of cryp-
tographic protocols. In Proc. of ICALP’00, vol. 1853 of LNCS, 354–372. Springer-
Verlag, 2000.

11. H. Hüttel and J. Srba. Recursion vs. replication in simple cryptographic protocols.
Technical Report RS-04-23, BRICS Research Series, 2004.

12. H. Hüttel and J. Srba. Recursive ping-pong protocols. In Proc. of WITS’04,
129–140, 2004.

13. M. Křet́ınský, V. Řehák, and J. Strejček. Extended process rewrite systems: Ex-
pressiveness and reachability. In Proc. of CONCUR’04, vol. 3170 of LNCS, 355–
370. Springer-Verlag, 2004.

14. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of
sessions and composed keys is NP-complete. TCS, 299, 2003.

15. R.J. van Glabbeek. The linear time - branching time spectrum I: The semantics
of concrete, sequential processes. In Handbook of Process Algebra, chapter 1, 3–99.
Elsevier Science, 2001.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 188 – 198, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Modeling Data Integration with Updateable Object Views

Piotr Habela1, Krzysztof Kaczmarski2, Hanna Kozankiewicz3,
and Kazimierz Subieta1,3

1 Polish-Japanese Institute of Information Technology, Warsaw, Poland
habela@pjwstk.edu.pl

2 Warsaw University of Technology, Warsaw, Poland
kaczmars@mini.pw.edu.pl

3 Institute of Computer Science PAS, Warsaw, Poland
{hanka, subieta}@ipipan.waw.pl

Abstract. Recently, a range of applications of views increases. Views are not
anymore tightly related to classical databases – there are proposals to use them
as means of data transformation and integration in distributed environment. De-
spite many aspects of view applications, there is still lack of suitable graphical
notation that would help designers by providing clear notions from the very
early stage of system development. Therefore, our objective is to propose a
suitable extension of UML supporting the design process. We focus on model-
ing object-oriented updateable views in the context of data integration. We be-
lieve it is one of the most prominent appliances of views. The paper describes
assumed general features of updateable object views and fits them into an ob-
ject-oriented metamodel. Based on this, we suggest the necessary view-specific
notation elements, and present some examples of view modeling.

1 Introduction

Views constitute one of the fundamental database mechanisms, which provide virtual
images of data stored in a database. Views are an important component of many ap-
plications as they provide abstraction and generalization over data, transformation of
data, access and merging data from multiple sources, etc. Views can be used in Web
applications as means of integration of heterogeneous resources stored at remote sites
into a unified ontology. Traditionally such applications were implemented in lower
level languages like C or Java. An advantage of using query language to describe in-
tegration is a higher level of abstraction what in turns reduces the time required for
development and the cost of maintenance. Although the idea to use views as a mean
of data integration is not new (e.g. [2]) and views are an important component of
many applications, there are still no satisfactory means to model them. The problem
of view’s modeling has already appeared in literature [1, 10]. Several useful notions
were discussed in the context of relational databases, views, and mapping between
object diagrams and database tables. The mentioned guides propose constructs for
virtual objects (certain stereotype), view dependencies (dependency) and read-only
attributes. However, they are not advanced due to limited capabilities of views in
relational databases. They allow to represent flat, read-only views to stored data
whereas modern databases (relational, object-relational, object-oriented, XML-
oriented) require much more advanced modeling features.

 Modeling Data Integration with Updateable Object Views 189

Earlier approaches to view modeling have presented structural view definition in
contrast to operational definition used in classical systems, where a view is defined by
a single query [5]. The idea was to provide a representation for resulting objects and
their properties instead of defining how they are created. In this sense, our solution is
rather structural. However, it is necessary to note that our object and view models are
much more sophisticated than the ones assumed by the ODMG standard [3, 11].

We propose a new extension of UML that allows to model integration of data
through updateable views [6, 8]. The view features covered by this notation are in-
spired by the implementation we have developed, based on the Stack-Based Ap-
proach. However, we believe that the notation can be also used for modeling views
defined within other approaches e.g. in SQL using instead-of triggers like in Oracle
and MS SQL Server. Our objective was to analyze the ways of extending existing
modeling standards to support more advanced capabilities of database systems. We
believe that a better view modeling would:

• create a reliable communication tool between business and DBMS designers;
• simplify the process of view design and implementation;
• clarify and standardize views documentation;
• allow to better comprehend the dependencies between objects and views;
• provide uniform expressiveness for all system components.

 The proposed notions are dedicated for a design phase of a software lifecycle. We
are skeptical about any automatic translation between view models and view imple-
mentation because graphical notations are so far less descriptive than program-
ming/query languages. Therefore, we do not assume the elimination of the implemen-
tation phase.

The rest of the paper is structured as follows. Section 2 describes our approach to
updateable views that is a basis for this paper. In Section 3, we summarize the exist-
ing UML notions related to view modeling and indicate their limitations. Section 4
presents the main contribution of this paper i.e., the extensions to the UML meta-
model and the respective notation elements proposed to effectively support the up-
dateable object views modeling. In Section 5, we briefly outline the position of view
modeling within the software development process. Section 6 concludes.

2 The Approach to Updateable Views

In this section we shortly present our approach to updateable views [7], which is a
motivation for the graphical notation presented in this paper. The view mechanism is
based on the Stack-Based Approach (SBA) [13], which assumes that query languages
are a special kind of programming languages and can be formally described in a simi-
lar manner. SBA defines its own query language – Stack-Based Query Language [14].

A database view definition is not a single query (as it is in SQL), but it is a more
complex structure. It consists of two parts: the first one determines the so-called seeds
(the values or references to stored objects that are the basis for building up virtual ob-
jects), and the second one redefines the generic operations on virtual objects. The first
part of the view definition is an arbitrarily complex functional procedure. The seeds it
returns are passed as parameters for the operations on virtual objects. The operations

190 P. Habela et al.

have the form of procedures that override default updating operations. We identified
four generic operations that can be performed on virtual objects:

1. Updating, which assigns a new value to the virtual object. A parameter the proce-
dure accepts is the new value to be assigned.

2. Deletion, which deletes the virtual object.
3. Insertion, which inserts a new object into the given virtual object. The object to be

inserted is provided as a parameter.
4. Dereference, which returns the value of the given virtual object.

 For a given view an arbitrary subset of these operations can be defined. If any op-
eration is not defined, it means it is forbidden (we assume no updating through side
effects, e.g. by references returned by a view invocation).

Moreover, a view definition may contain nested views, defined within the contain-
ing view’s environment. Thus, arbitrarily nested complex objects can be constructed.

When a view is invoked in a query, it returns a set of virtual identifiers (that are
counterparts of the identifiers of stored objects). Next, when a system tries to perform
update operation with a virtual identifier as an l-value, it recognizes that it deals with
the virtual object and calls a proper update operation from the view definition. To en-
able that, a virtual identifier must contain both a seed and the identifier of the view
definition. The whole process of view updating is internal to the proposed mechanism
and is invisible to view users, who deal with virtual objects in the same manner as
with real objects (this feature is known as a view transparency).

3 Available Modeling Notions

3.1 UML Versus Object-Oriented Databases

The UML object model is strongly inspired by programming languages like C++ and
Java. Thus, the most straightforward to model are applications written with one of the
mainstream general purpose programming languages. For other applications like e.g.
data modeling for relational databases, specialized profiles are required [1]. One
would expect that for modeling object databases the core UML constructs could suf-
fice. In fact, this is not true: we need to go further and reconsider the issue of object’s
features accessibility and visibility.

The first problem of modeling such database is object relativism, which allows ar-
bitrarily nested object compositions. This feature differs from traditional program-
ming languages, where the structure of objects is physically “flat”, since it does not
allow object members to be themselves complex objects. Fortunately, UML is not
equally restrictive. Nested objects can be represented as class-typed attributes. The
detailed structure can be shown using the composition symbol. However, in this case
the visual notation becomes rather inconvenient. One needs to choose between the
“nested” composition notation, where the class of the subobject is shown inside the
class of its owner, and the regular composition (see Fig. 1). CASE tools seldom sup-
port the former construct. UML does not allow to draw associations from the nested
class symbol, neither. In this sense, it makes the inner object “encapsulated”. The
latter approach provides the necessary flexibility, at the cost of expressiveness, as the

 Modeling Data Integration with Updateable Object Views 191

nested object’s features are no longer shown inside the super-object’s class symbol,
and may be thus mistreated as an association.

Employee

Employee

 company
 from
 till

PreviousJob

*

 company
 from
 till

PreviousJob

*

Fig. 1. UML notations available for object composition

 Another problem is describing the manipulations allowed for particular object’s
feature. The visibilities (public, protected, private) definitely do not provide the com-
plete description. Abstracting from the declarations available in current popular pro-
gramming languages, we find the need for specifying the applicability for the follow-
ing generic operations (as supported by the previously presented view mechanism):
updating, dereferencing1, inserting and deleting (if a feature’s multiplicity allows).
The UML metamodel already defines a meta-attribute of similar purpose. This is the
changeability attribute defined in the StructuralFeature metaclass. However its al-
lowed values are enumerated as: changeable, frozen and addOnly, which does not
cover all the cases (24=16) resulting from the presence or absence of a given generic
operation. Simply extending this enumeration to 16 values would be rather impracti-
cal. Instead, four independent boolean attributes seem to be more suitable.

Although four generic operations appear in the context of virtual objects, it seems
reasonable to apply analogous constraints (marking a given feature e.g. read-only,
removable etc.) also to regular (concrete) objects, to preserve view transparency.

3.2 Describing Derived Data

The well-known UML “derived” symbol (represented by “/” character) allows to
mark any model element as derived from other element or elements and thus serving
redundant data. In practice, as suggested e.g. by the UML Notation Guide (part of the
official specification [11]), the symbol is applicable to attributes and association ends,
to indicate that their contents can be computed from other data. This feature is suit-
able to mark the database features served by object views. On the other hand, due to
genericity of the notion, the way of specifying the source features of a given derived
attribute or association is not precise, and requires additional comments to be associ-
ated. Taking into account the importance of data source traceability in virtual views
modeling, we suggest introducing a kind of dependency relationship dedicated for in-
dicating the source data in a more detailed form of class diagrams.

1 This could be named “reading” as it is intended to return a value representing a given object.

However, we chose “dereferencing” to note that even without this operation provided, it is
still possible to navigate into a given object (if it is a complex object). For details see [9, 12].

192 P. Habela et al.

4 Proposed Extensions to the Modeling Notions

4.1 Modeling Virtual Objects

Database Global Objects. It is necessary to decide how the top-level database fea-
tures2 should be shown in class diagrams. In UML, structural features designate,
where class instances may occur. Thus, relying on the extent notion can be avoided.

Following this style would require introduction of e.g. Database pseudo-class, in
order to “anchor” the global object declarations (as shown in Fig. 2a). In typical cases
(but not all) it can be perceived as overly formalistic: global object declarations are
the only place where the instances of their classes occur, names of those global ob-
jects (instance names) are usually fixed by classes. Fig. 2b shows a less formal nota-
tion for those situations. The presence of Employee concrete objects and Clerk virtual
objects in database’s global scope is assumed implicitly.3 Also the “/” sign marking
the derived feature has been moved from the feature name to the class name com-
partment. The same can be done with changeability symbols discussed later.

Database

 ...

Employee

 ...

Clerk

Employee

*

/Clerk

*

 ...

Employee

 ...

/Clerk

a) b)

Fig. 2. Traditional (a) and simplified (b) notation for top-level database features

Objects Interfaces. Externally visible features (interfaces) of virtual objects require
constructs for proper:

• Distinction of the composition of nested objects and references among objects.
• Marking the derived (virtual) features.
• Showing the changeability allowed for particular (derived or concrete) objects.

 The first two problems can be solved with the standard UML notation, provided
that there is an agreement on the semantics of the composition relationship. However,
changeability flags would need the following symbols (see Fig. 3):

• isUpdateable – represented by the exclamation mark (“!”);
• isDereferencable – represented by the question mark (“?”);
• isRemovable – represented by the caret mark (“^”);
• isInsertable – represented by the “greater than” mark (“>”);

 The symbols can appear before a feature name (or before a class name in the sim-
plified syntax suggested in Fig. 3). The changeability symbols are shown within the

2 Usually objects from which we start navigation in queries.
3 Similarly for the lower levels of object hierarchy, that is, for nested objects, we tend to
 suppress their composition role name, showing only their class name.

 Modeling Data Integration with Updateable Object Views 193

curly brackets in order to allow suppressing changeabilities (by showing no brackets,
to distinguish from declaring a feature with none of the changeabilities allowed).

Dependency Illustration. For the most detailed diagrams, the notation presented
above can be accompanied with the view dependency symbols, based on the generic
UML dependency relationship and using the same graphical notation (labeled «view
dependency» if necessary). Notice that for pragmatic reasons we simplify the nota-
tion. Although the view dependencies span between structural features (as shown in
Fig. 3), the dependency arrows are drawn rather between their classes. In contrast to
the regular dependency arrow, view dependency can additionally indicate (using
keywords within curly brackets, as shown in Fig. 3), the selectivity and aggregation
property (selection and aggregation keywords respectively). To indicate that particu-
lar complex view (that is, a view containing other views) preserves the structure of its
source object (mapping the features of the latter), we use the stem keyword in the
properties representing sub-views. Section 4.2 shows and explains notions introduced
in the metamodel.

 {!?} /name : String
 {?} /avgMark : Decimal

{>^} /StudMark

 {!?} /name : String

{>^} /Supervisor* {stem}

 name : String

Student
 name : String
 mark : Short

Lecture

 name : String
 isSupervisor : Boolean

Professor

1

attends

*

1*

{selection}{aggregation}

Fig. 3. Exemplary complex view with its data dependency specifications. Assume the data is
restructured according to the needs of some external system (e.g. a statistical analysis subsys-
tem), which should not have any access to the identities of the students. StudMark and Supervi-
sor show also the changeability notation. Selection means, that to provide Supervisor virtual
objects only certain Professor source objects are selected. Aggregation indicates that a number
of Lecture objects is used to create a single StudMark object. Stem label indicates preserving
the structure (and dependency) of source objects. Here StudMark depends on Supervisor as
Lecture is connected to Professor

Data Integration. Recently one of the most important tasks of object views is data in-
tegration. Fig. 4 presents how example integration can be modeled within our nota-
tion. Let us assume the following case. Data about students is distributed among three
locations: Warsaw, Gdansk, Cracow, and Radom. All students are identified by their
IDs. In Warsaw some personal data: students’ names and addresses are kept; in Ra-
dom – information about students’ scholarships; whereas in Gdansk the information
about their supervisors is stored. Additionally, we need to incorporate complete data
of other students, provided from Cracow. We would like to gather all these informa-
tion and present them as if they were located in one place.

Merge and join labels show relationship between dependencies rather than rela-
tionships between virtual and concrete objects. This is another field in which UML
must be extended. Clearly, while presenting integration of data from multiple sites

194 P. Habela et al.

one can also use the discussed earlier properties of view dependencies like aggrega-
tion, or selection.

 ID : String
 name : String
adress : String

Student

Warsaw

1
*

Radom Gdansk

 ID : String
scholarship : String

Student

 ID : String
supervisor : String

Student

1
*

1
*

{join}

{?!}/name : String
{?!}/address : String
{?!}/scholarship : String
{?!}/supervisor : String

/AnonymousStudent

-ID : String
-name : String
-address : String
-scholarship : String
-supervisor : String

Student

Cracow

1
*

{merge}

Fig. 4. Integration of distributed data

4.2 Extending the UML Metamodel

In this subsection, we present an extended UML metamodel provided with the fea-
tures necessary to describe view definitions. The nature of the proposed extension
(universal applicability of derived features) seems to justify a modification of the core
metamodel.

In contrast to the programming languages, where the class declarations remain in-
dependent on their instances (e.g. particular variable declarations), database class (or
interface) are often related to particular extent and may determine its name used when
referring to the object of that class. In other words, there could be practically one-to-
one relation between a class and the place where its instances occur.
However, to better align with the UML style and not to limit the object model flexi-
bility, we decided to locate the view-related notions within the feature definition
rather than within a class. All the relevant features are shown in Fig. 5.

Modifications of the UML Metamodel. The only change into existing UML notions
is the replacement of the changeability attribute from the StructuralFeature class. As
explained in Section 4.1, it would be also possible to keep this attribute and only ex-
tend the enumeration of values allowed for it. However, with total number of 16 pos-
sible changeabilities, we suggest introducing four boolean attributes as a more intui-
tive solution. As already explained, we use the following names: isUpdateable,
isRemovable, isInsertable and isDereferencable.

Additions to the UML Metamodel. We assume that those structural features, which
posses (standard-defined) tagged value “derived” represent virtual objects4 and may
therefore be the subject of data dependency specifications.

4 In our approach we currently deal only with virtual (not materialized) object views. Thus, a

feature marked as derived is assumed it to provide virtual objects. A more general approach
would require an additional flag to distinguish virtual views from materialized ones.

 Modeling Data Integration with Updateable Object Views 195

The dependencies point other features to indicate that they are used as sources for
virtual object represented by particular feature. Although it is not possible to precisely
describe visually how a given virtual object is computed, some information can be
easily provided concerning the characteristics of a view dependencies and relations
between them, which are in fact data integration patterns.

• View Dependency Properties (mutually orthogonal) modeled by flags in ViewDe-
pendency: Selection (Source data is used to select only the objects meeting a given
criteria); Aggregation (This property indicates that a given virtual object realizes a
many-to-one mapping of the source data).

• Integration Patterns modeled by binding two or more dependencies (of complex
features) with the formedWith association link (Fig. 5). We have suggested: Merge
(integration dealing with horizontally fragmented data) and, Join (used with verti-
cally fragmented data (see example in Section 4.1 and Fig. 4).

 We also choose to add a stem mark to the composition, which makes the depend-
ency graph simpler (as explained in the previous section and Fig. 3). The necessary
meta-attribute isStem was located within the Feature. This is consistent since each
nested view belongs to exactly one composition.

 name : Name

ModelElement

ClassifierFeature

BehavioralFeature

 multiplicity : Muliplicity
 targetScope : ScopeKind
 ordering : OrderingKind
 isUdpateable : Boolean
 isRemovable : Boolean
 isDereferencable : Boolean
 isInsertable : Boolean
 isStem : Boolean

StructuralFeature

 isSelective : Boolean
 isAggregating : Boolean

ViewDependency

+dependentFeature

*

+source *

1

+feature

* +type

1

+typedFeature

*

*

/formedWith

*

 kind : IntPatternKind

IntegrationPattern

Fig. 5. Fragment of the UML metamodel extended with the notions supporting updateable
object views

The proposed dependency properties are not exhaustive, as it is not possible to
cover with such notions the whole expressiveness of even the most typical queries
that may be used as view definitions. However, it provides some hint concerning the
intent of a given view, with the level of detail that is feasible to show on a diagram.

Integration description usually requires choosing an integration key to join the
fragmented data. Although it would be possible to specify such key without further

196 P. Habela et al.

extending the metamodel (by introducing yet another IntegrationPattern kind), we do
not describe it due to the inherent detail limitation of such diagram. Complete specifi-
cation of view definitions the query language statements are inexplicable.

Note that the information stored using the abovementioned metamodel extensions
is very detailed as it may indicate the origin of every elementary data item of a virtual
object. However, it is hardly feasible and rather impractical to show such a detailed
dependency network on a diagram. Thus, we assume that in most cases, the lowest
level of view definitions (that is, the level providing primitive objects) would be “col-
lapsed” using the UML’s attribute notation and in consequence, the dependencies on
this level would not be shown.

5 View Modeling in a Development Process

View modeling in our approach can be a subject of different modeling perspectives
commonly used by practitioners during software development [4]:

• Basic level (analysis) perspective shows only general idea of data reorganization
by description of resulting virtual object properties via interface feature. In this
stage of system development, too many details could obscure important ideas.

• In design perspective the number of details may be adjusted by a modeler accord-
ingly to specific needs. Data dependencies can be shown, including indication of
some typical transformation kinds applied and changeability flags.

 As already stressed, the main concern of this research is modeling data integration.
This field of modern system design is not satisfactorily covered by existing tech-
niques. This situation may lead to problems during development and could cause de-
lays or unpredicted complications and thus additional costs. Extended modeling con-
structs based on the presented metamodel, give advantages for data integration efforts.

Data Modeling and Software Change Management. By explicitly documenting de-
pendencies between objects analysts outline required data transformation. Specifica-
tion of view dependencies may help not only in early estimations of a view complex-
ity, but also in predictions of database change impact. Virtual objects are treated
exactly in the same way as normal objects – following the object relativism principle
clarifies semantics of a modeling language.

Integration Modeling. Dependency links between objects help recognizing necessary
data transfer if objects are distributed. Design diagrams uniformly describe data and
data integration paths (plus relationships between sources), thus more completely
document the system. Extended information about virtual objects supports reflection
and may be dynamically used in more advanced applications. For example, design
diagrams may generate the templates for view’s implementation.

Integration Verification. Extended view dependency links also help in verification
of view implementation completeness. Using uniform modeling notions described in
the metamodel helps tracking user requirements through all the development stages.

 Modeling Data Integration with Updateable Object Views 197

6 Conclusions and Future Work

In our opinion, the current lack of adequate notation for view modeling in UML is a
serious drawback. Therefore, in this paper we proposed an extension of UML that
supports view modeling. The presented notation seems to be consistent and well fitted
into the UML metamodel. It may be a useful notation that supports view modeling at
analysis and design stages of application development.

Presented notation allows to model integration of object-oriented or XML data.
It supports modeling of (possibly nested) views and allows to describe relationships
between stored and virtual data. Some limitations come from the style UML uses for
representing classes and their features, especially in case of nested objects. We tried
to propose an optimum solution, providing a valuable description without introducing
significant changes into the UML. The notation supports description of access rights
to virtual objects at any level of view’s hierarchy. The presented notation can be also
useful for automatic generation of skeletons of views.

Taking into account that Grid applications are recently in focus of researchers all
over the world, we claim that UML should support modeling in this area. Therefore,
our future works include development of methodology for data-intensive Grid devel-
opment that is based on our UML view notation.

References

1. Scott W. Ambler: Agile Database Techniques. Effective Strategies for the Agile Software
Developer. John Wiley & Sons 2003

2. Z. Bellahsene: Extending a View Mechanism to Support Schema Evolution in Federated
Database Systems. Proc. of DEXA 1997, 573-582

3. R. Cattel, D. Barry. (eds.) The Object Data Standard: ODMG 3.0. Morgan Kaufmann,
2000

4. M. Fowler. UML Distilled, Addison-Wesley Pub Co, ISBN: 0321193687
5. W. Heijenga. View definition in OODBS without queries: a concept to support schema-

like views. In Doct. Cons. 2nd Intl. Baltic Wg on Databases and Information Systems, Tal-
linn (Estonia), 1996.

6. K. Kaczmarski, P. Habela, K. Subieta. Metadata in a Data Grid Construction. Proc. of the
13th IEEE International Workshops on Enabling Technologies: Infrastructures for Col-
laborative Enterprises (WETICE-2004), Modena, Italy, 2004

7. H. Kozankiewicz, J. Leszczyłowski, K. Subieta. Updateable XML Views. Proc. of
ADBIS’03, Springer LNCS 2798, 2003, 385-399

8. H. Kozankiewicz, K. Stencel, K. Subieta. Integration of Heterogeneous Resources through
Updatable Views. Proc. of the 13th IEEE International Workshops on Enabling Technolo-
gies: Infrastructures for Collaborative Enterprises (WETICE-2004), Italy, 2004

9. H. Kozankiewicz and K. Subieta. SBQL Views – Prototype of Updateable Views. Local
Proc. of ADBIS’04, Budapest, Hungary, 2004

10. E. Naiburg, R. A. Maksimchuk. UML for Database Design. Addison-Wesley, 2001
11. Object Management Group: Unified Modeling Language (UML) Specification. Version

1.5, March 2003 [http://www.omg.org].

198 P. Habela et al.

12. K.Subieta. Theory and Construction of Object-Oriented Query Languages. Editors of the
Polish-Japanese Institute of Information Technology, 2004, ISBN: 83-89244-28-4, pp.
522.

13. K. Subieta, C. Beeri, F. Matthes, and J. W. Schmidt. A Stack Based Approach to Query
Languages. Proc. of 2nd Intl. East-West Database Workshop, Klagenfurt, Austria, Sep-
tember 1994, Springer Workshops in Computing, 1995.

14. K. Subieta, Y. Kambayashi, and J. Leszczyłowski. Procedures in Object-Oriented Query
Languages. Proc. of 21-st VLDB Conf., 182-193, 1995

Fixed-Parameter Tractable Algorithms for
Testing Upward Planarity

Patrick Healy and Karol Lynch

CSIS Department, University of Limerick, Limerick, Ireland
{patrick.healy, karol.lynch}@ul.ie

Abstract. We consider the problem of testing a digraph G = (V, E) for
upward planarity. In particular we present two fixed-parameter tractable
algorithms for testing the upward planarity of G. Let n = |V |, let t be
the number of triconnected components of G, and let c be the number
of cut-vertices of G. The first upward planarity testing algorithm we
present runs in O(2t · t! · n2)-time. The previously known best result is
an O(t! · 8t · n3 + 23·2c · t3·2c · t! · 8t · n)-time algorithm by Chan. We use
the kernelisation technique to develop a second upward planarity testing
algorithm which runs in O(n2 + k4(2k + 1)!) time, where k = |E| − |V |.
We also define a class of non upward planar digraphs.

1 Introduction

A drawing of a digraph is planar if no edges cross and upward if all edges
are monotonically increasing in the vertical direction. A digraph is upward pla-
nar(UP) if it admits a drawing that is both upward and planar. Fig. 1(a) shows
a planar (but not upward) drawing of a digraph, Fig. 1(b) shows an upward (but
not planar) drawing of the same digraph, while Fig. 1(c) shows an UP drawing
of a different digraph. Testing if a digraph is UP is a classical problem in the
field of graph drawing. Graph drawing is concerned with constructing geometric
representations of graphs and is surveyed by Di Battista et al. [1]. The upward
planarity of digraphs has been much studied and many interesting results have
been published including a proof that upward planarity testing (UPT) is an NP -
complete problem [2], a linear time algorithm to test whether a given drawing
is UP [3], a quadratic time testing algorithm for embedded digraphs [4], and a
linear time testing algorithm for single-source digraphs [5].

(b) (c)(a)

Fig. 1. A planar drawing (a); An upward drawing (b); An upward planar drawing (c)

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 199–208, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 P. Healy and K. Lynch

Parameterised complexity theory tries to tell apart problems that are well-
behaved with respect to one or more parameters from those that are not and is
surveyed by Downey and Fellows [6]. Just like polynomial time algorithms are
a central idea in the classical formulation of computational complexity, fixed-
parameter tractable algorithms are a central idea in parameterised complexity.
A fixed-parameter algorithm with input size s and parameter size p is said to
be fixed-parameter tractable, or in the class FPT, if it has running time f(p) · sα

where f is an arbitrary function and α is a constant. Chan has developed a fixed-
parameter tractable algorithm for testing the upward planarity of an arbitrary
digraph G that runs in O(t! · 8t · n3 + 23·2c · t3·2c · t! · 8t · n)-time, where n is the
number of nodes of G, t is the number of triconnected components of G, and c
is the number of cut-vertices of G [7]. As the running time of Chan’s algorithm
is exponential in terms of the parameters, but polynomial in terms of the size of
the graph, it is efficient for a small, but hopefully useful, range of the parameters.
Perhaps the first applications of FPT algorithms in graph drawing were to an
assortment of NP -complete layered graph drawing problems [8, 9, 10].

The three main contributions of this paper are numbered 1) to 3) as follows:
1) We develop an FPT algorithm (henceforth referred to as Algorithm 1) for the
parameterised problem of testing a digraph G with t triconnected components
for upward planarity which is an improvement on the previous best algorithm for
this parameterised problem; 2) We use the kernelisation technique to develop the
first FPT algorithm (henceforth referred to as Algorithm 2) for the parameterised
problem of testing a digraph G with k = |E| − |V | for upward planarity; 3)
We give an upper bound on the number of edges in an arbitrary UP digraph
(Theorem 5). Although Algorithms 1 and 2 are both designed to test digraphs
for upward planarity the fact that their parameters are different means that
they will each run efficiently on a different set of digraphs. The remainder of this
paper is organised as follows. After definitions and preliminaries in Section 2
we present Algorithm 1 in Section 3, Algorithm 2 in Section 4, Theorem 5 in
Section 5 and conclusions in Section 6.

2 Preliminary Definitions

We assume all digraphs are connected, acyclic and planar. This does not affect
the generality of our algorithms because a disconnected digraph is UP if and
only if all its components are UP. Also planarity and acyclicity are necessary
conditions for upward planarity and can be detected in linear time. Let G be a
digraph. We denote the node set of G by V (G) and the edge set of G by E(G).
For any v ∈ V (G) we denote the number of incoming (resp., outgoing) edges
incident on v by d−(v) (resp., d+(v)) and we denote d−(v) + d+(v) by d(v). For
any digraph G we let V2(G) = {v ∈ V (G) : d(v) = 2} and Vh(G) = {v ∈ V (G) :
d(v) ≥ 3}. We refer to nodes with degree greater than 2 as heavy nodes. An
upward planar straight-line (UPSL) drawing of a digraph G is an upward planar
drawing of G in which every edge is represented by a straight line segment (see
Fig. 1(c)). An st-digraph is an acyclic digraph with exactly one source, exactly

Fixed-Parameter Tractable Algorithms for Testing Upward Planarity 201

one sink, and with an edge from the source to the sink. We will need Theorem 1
by Di Battista and Tamassia [11] and Kelly [12], later.

Theorem 1 (Di Battista and Tamassia; Kelly). For any digraph G the
following statements are equivalent.

1. G is UP;
2. G is the spanning subgraph of a planar st-digraph;
3. G admits an UPSL drawing.

A cut-set of size two (resp., one) is referred to as a separation pair (resp.,
cut-vertex). A split pair of G is either a separation pair or a pair of adjacent
nodes. A block (biconnected component) of a digraph G is a maximal connected
subgraph B of G such that no node of B is a cut-vertex of B. Thus B is either
a maximal biconnected subgraph of G or else the underlying graph of B is K2.
We use Hopcroft and Tarjan’s [13] definition of the triconnected components of
a biconnected graph which was rephrased by Di Battista and Tamassia [14] as
follows. If B is triconnected, then B itself is the unique triconnected component
of B. Otherwise, let (u, v) be a separation pair of B. We partition the edges of
B into two disjoint subsets E1 and E2 (|E1|, |E2| ≥ 2), such that the subgraphs
B1 and B2 induced by them have only nodes u and v in common. We continue
the decomposition process recursively on B′

1 = B1 + (u, v) and B′
2 = B2 + (u, v)

until no decomposition is possible. The resulting graphs are each either a tricon-
nected simple graph, or a set of three multiple edges (triple bond), or a cycle
of length three (triangle). The triconnected components of B are obtained from
such graphs by merging the triple bonds into maximal sets of multiple edges
(bonds), and the triangles into maximal simple cycles (polygons). The tricon-
nected components of B are unique. An embedded digraph Gφ is an equivalence
class of planar drawings of a digraph G with the same clockwise orderings, φ,
of the edges incident upon each node. Such a choice φ for a clockwise ordering
of the edges incident on each node is called an embedding of G. We use φ(v) to
denote the clockwise ordering of the edges incident on v in Gφ. An embedded
digraph is upward planar if it contains an UP drawing.

Theorem 2 (Bertolazzi et al. [4]). An embedded digraph Gφ, with n nodes
can be tested for upward planarity in O(n2) time.

The angles of an embedded digraph Gφ are ordered triples 〈a, v, b〉, where
a and b are edges and v is a node incident on both a and b, such that either
a directly precedes b in φ(v) or v is a node of degree 1. An angle 〈a, v, b〉 of
Gφ is said to be incident on the node v. An angle 〈a, v, b〉 is said to be an
S-angle (resp., T -angle) if both a and b leave (resp., enter) v; and an I-angle
if one of the edges a, b leaves v and the other enters v. The angles of Gφ are
mapped to geometric angles in an UPSL drawing Γ of Gφ. Let 〈a, v, b〉 be an
angle of Γ . If a �= b the size of the corresponding geometric angle of 〈a, v, b〉 in
Γ equals the number of radians one has to rotate a in the clockwise direction
around v in order to reach b. If a = b the size of the corresponding geometric

202 P. Healy and K. Lynch

angle of 〈a, v, b〉 is 2π. An angle of Γ is said to be large (resp., small) if its
corresponding geometric angle is greater (resp., smaller) than π. An SPQR-tree
is a data structure that represents the decomposition of a biconnected graph
with respect to its triconnected components. Due to space constraints we don’t
include a definition of SPQR-trees here, and instead cite two of the many papers
that contains a definition of SPQR-trees [14, 15]. A familiarity with SPQR-trees
is necessary to fully understand Section 3.

3 An FPT Algorithm Based on an SPQR-Tree Bound

Let G be a digraph with n nodes, c cut-vertices, and t triconnected components.
In this section we outline an FPT algorithm for testing the upward planarity of
G where the parameter is t. Chan has developed a parameterized algorithm for
UPT that runs in O(t! · 8t ·n3 + 23·2c · t3·2c · t! · 8t ·n)-time [7]. In this section we
present an algorithm (which we refer to as Algorithm 1) that runs in O(2t ·t!·n2)-
time and thus improves on Chan’s algorithm [7]. Algorithm 1 works by dividing
G into its blocks and testing each block separately for upward planarity subject
to certain conditions. A decomposition strategy is described [16, 17] that allows
the blocks of G to be tested separately with certain extra conditions applied to
them. G can be decomposed into its blocks and the conditions deduced for each
block in O(n2)-time. If B is a block of G then the conditions applied to B using
this decomposition strategy take the following forms:

1. B must be UP.
2. B must have an UP drawing whose external face contains a specified node.
3. B must have an UP drawing whose external face contains an angle of a

certain type (i.e., S-angle, T -angle, or I-angle) and size (i.e., large or small)
incident on a specified node.

If the underlying graph of B is K2 then it is trivially true that B has an UP
drawing satisfying all of these conditions. Otherwise B is a biconnected simple
graph. Bertolazzi et al.’s algorithm [4] for testing the upward planarity of an
embedded digraph can be tailored to test an embedded biconnected digraph for
the aforementioned conditions in quadratic time [17]. Thus one can test if B
has an UP drawing satisfying any of the above conditions by enumerating all its
embeddings and testing each in O(|V (B)|2)-time.

3.1 Bounding the Number of Embeddings of a Block

In this subsection we show that the number of embeddings of B is bounded
by a function of the number of triconnected components it contains. Let T be
the SPQR-tree of B. T is a rooted ordered tree whose nodes are of four types,
S-nodes, P-nodes, Q-nodes and R-nodes. Lemmas 1 and 2 are used in our proof
of Lemma 3 which gives an upper bound on the number of embeddings of a
biconnected graph in terms of its triconnected components.

Lemma 1 (Di Battista and Tamassia [14]). Two P-nodes cannot be adja-
cent.

Fixed-Parameter Tractable Algorithms for Testing Upward Planarity 203

Lemma 2. A P-node cannot be adjacent to more than one Q-node.

Proof. As B is a simple graph at most one split component of any split pair
{u, v} is an edge. Thus if the split pair {u, v} corresponds to a P-node μ in T
then at most one child of μ is a Q-node. But all P-nodes in T correspond to a
split pair in B. It follows that a P-node is adjacent to at most one Q-node. �

Lemma 3. A simple biconnected graph B with t triconnected components has
at most 2t · t! embeddings.

Proof. Let r, p and s represent the number of R-nodes, P-nodes, and S-nodes
in T respectively. The triconnected components of B are in one-to-one corre-
spondence with the S-nodes, P-nodes and R-nodes of the SPQR-tree T of B
[14]. Thus B has t = r + p + s triconnected components. Label the P-nodes
of T P1, . . . , Pp. Let ci represent the number of children of Pi has in T , for
i = 1, . . . , p. It follows from Lemmas 1 and 2 that all but one child of a P-node
is either an S-node or an R-node. Thus

∑p
i=1(ci− 1) ≤ r + s. As t = r + s + p it

follows that r+s = t−p. It is also true that
∑p

i=1(ci−1) =
∑p

i=1(ci)−p. There-
fore

∑p
i=1(ci)− p ≤ t− p which means

∑p
i=1 ci ≤ t. Therefore

∏p
i=1 ci! ≤ t!. Di

Battista and Tamassia [15] describe how the number of embeddings of B equals
2r

∏p
i=1 ci!. Clearly 2r ≤ 2t. Therefore the number of embeddings of B is less

than or equal to 2t · t! �

Thus there are O(2t · t!) embeddings of B each of which can be tested in
(|V (B)|2)-time. Thus it can be tested if B has an upward planar drawing satisfy-
ing the conditions specified during the decomposition process in O(2t·t!·|V (B)|2)-
time. It follows that G can be tested for upward planarity in O(2t · t! · n2)-time.

4 An FPT Algorithm for Sparse Acyclic Digraphs

In this section we develop an FPT algorithm for testing the upward planarity
of a digraph G where the parameter is k = |E(G)| − |V (G)|. We use a standard
technique for developing FPT algorithms called kernelisation, which involves
reducing a parameterised problem instance I to an “equivalent” instance Ikr

where the size of Ikr is bounded by some function of the parameter. Then the
instance Ikr is solved and from this a solution to the original instance I follows.
Following preliminary definitions in Subsection 4.1 we present reductions for
obtaining the kernel graph of G in Subsection 4.2 and in Subsection 4.3 we show
how to test the kernel graph of G for upward planarity.

4.1 Preliminaries

A path P in a digraph G is a sequence P = 〈v0, e1, v1, e2, . . . , vn−1, en, vn〉 of dis-
tinct nodes (except possibly v0 and vn) and edges of G, such that ei = 〈vi, vi−1〉
or ei = 〈vi−1, vi〉 for i = 1, . . . , n. We refer to a node v in P as an internal node
of P if v /∈ {v1, vn}. A chain of G is a path of G, with length ≥ 1, whose internal

204 P. Healy and K. Lynch

nodes (if any) have degree 2 and whose end-nodes have degree greater than 2.
If c is a chain we denote the set of nodes in c by V (c). We partition the set of
chains into four classes. A V-chain (resp. Λ-chain) is a chain whose first edge

enters (resp. leaves) its first node and whose

(a)

(c) (d)

(b)

Fig. 2. V-chain (a); Λ-chain (b);
C-chain (c); N -chain (d)

last edge enters (resp. leaves) its last node. A C-
chain (resp.N -chain) is a chain whose first edge
enters (resp. leaves) its first node and whose
last edge leaves (resp. enters) its last node.These
chains are illustrated in Fig. 2. Two or more
chains of a digraph G are said to be parallel
if they have the same class and the same first
node and the same last node. A closed chain
is a chain whose first node and last node are
identical. Let C be a chain which contains no
node v such that d−(v) = d+(v) = 1. We de-
note the length of C by len(C). By contracting
C we mean the operation of deleting any pair of
adjacent nodes of degree 2 in C (one of which

is a source and one of which is a sink) and adding a directed edge from the
node that was previously adjacent to the deleted sink to the node that was pre-
viously adjacent to the deleted source. No matter which pair of adjacent nodes
are deleted during the contraction the result is the same (up to isomorphism).

Theorem 3 (Healy-Lynch [17]). Let G be a digraph with fewer than three
heavy nodes. Then G is UP if and only if G is acyclic.

4.2 Obtaining the Kernel Graph

Given a digraph G to test for upward planarity reductions are performed on G
in order to obtain a digraph Gkr, called the kernel graph of G which is UP if
and only if G is UP. The number of nodes and the number of embeddings of Gkr

are each bounded by a (different) function of k. The following four reductions
are upward planarity invariant.

R1. Remove all nodes of degree 1;
R2. Replace any node v whose in-degree and out-degree equals 1 and its two

incident edges, 〈u, v〉 and 〈v, w〉 with the edge 〈u,w〉;
R3. Remove all parallel chains (by leaving only the shortest chain whenever two

or more chains are parallel);
R4. Remove all closed chains.

Perform reductions R1 - R4 until they are no longer possible. Call the re-
sulting digraph G′. Then perform R5 until it is no longer possible. The resulting
digraph is called the kernel graph of G and denoted by Gkr.

R5. Contract all chains with length l ≥ 10k + 2, where k = |E(G′)| − |V (G′)|.

Fixed-Parameter Tractable Algorithms for Testing Upward Planarity 205

It is not hard to see that reductions R1 - R2 are upward planarity invariant.
We have shown previously that reductions R3 - R5 are upward planarity invari-
ant for acyclic digraphs [17]. It can be shown that the kernel graph may be found
in O(|V (G)|2)-time. We use Ki to denote the family of digraphs with the property
that F ∈ Ki implies that F is the kernel graph of some acyclic digraph F ′ and
that |E(F)| − |V (F)| = i. Observe that |E(Gkr)| − |V (Gkr)| ≤ |E(G)| − |V (G)|
holds because reductions R1, R2, and R5 remove as many edges as nodes, and
reductions R3 and R4 remove one more edge than node.

4.3 Testing the Kernel Graph

Bertolazzi et al. have shown that if G is a digraph with n nodes, then one
can test if a given embedding of G has an UP drawing in O(n2) time (Theo-
rem 2). This suggests an upward planarity testing algorithm which works by
enumerating all embeddings of G and testing each individually. The drawback
with this approach is that the number of embeddings of G, even for fixed k,
can be exponential in terms of n. We show that the number of embeddings
of the kernel graph of G, Gkr is bounded by a function of k however, where
k = |E(Gkr)| − |V (Gkr)| (Lemma 7). We also bound the size of Gkr in terms
of the parameter k (Theorem 4). We first develop some properties of the kernel
graph involving the parameter k though. Lemma 4 bounds the number of heavy
nodes Gkr, Lemma 5 bounds the degree of a node in Gkr, and Lemma 6 gives a
formula for the number of internally disjoint chains in Gkr.

Lemma 4. 1 ≤ |Vh(Gkr)| ≤ 2k.

Proof. It follows from R1 that V (Gkr) = Vh(Gkr) ∪ V2(Gkr). Thus,∑
v∈V (Gkr)

(d(v)−2) =
∑

v∈Vh(Gkr)

(d(v)−2)+
∑

v∈V2(Gkr)

(d(v)−2) =
∑

v∈Vh(Gkr)

(d(v)−2)

Also observe that,∑
v∈V (Gkr)

(d(v)− 2) = 2|E(Gkr)|− 2|V (Gkr)| = 2(|V (Gkr)|+k)− 2|V (Gkr)| = 2k

Thus,
∑

v∈Vh(Gkr)(d(v)− 2) = 2k (1).

Since 2k ≥ 2 it follows that |Vh(Gkr)| ≥ 1. And since d(v)− 2 ≥ 1,∀v ∈ Vh(Gkr)
it follows that |Vh(Gkr)| ≤ 2k. Therefore, 1 ≤ |Vh(Gkr)| ≤ 2k. �

Lemma 5. If v ∈ V (Gkr) then d(v) ≤ 2k − |Vh(Gkr)|+ 3.

Proof. Equation 1 can be rewritten as
∑

v∈Vh(Gkr) d(v) = 2k + 2|Vh(Gkr)|. But
since d(v) ≥ 3,∀v ∈ Vh(Gkr) it follows that

d(v) ≤ 2k + 2|Vh(Gkr)| − 3(|Vh(Gkr)| − 1) = 2k + 3− |Vh(Gkr)|, ∀v ∈ Vh(Gkr)

Since 1 ≤ |Vh(Gkr)| (by Lemma 4), it follows that 2k − |Vh(Gkr)|+ 3 ≤ 2k + 2.
Therefore d(v) ≤ 2k + 3− |Vh(Gkr)| ≤ 2k + 2, ∀v ∈ Vh(Gkr). �

206 P. Healy and K. Lynch

Lemma 6. Gkr contains |Vh(Gkr)|+ k edge-disjoint chains.

Proof. The underlying undirected graph of Gkr is homeomorphic to a unique
multigraph that contains no nodes of degree 2 and which we call the reduced
multigraph of Gkr, and denote as M(Gkr). There is a one-to-one correspon-
dence between the edges of M(Gkr) and the chains of Gkr and between the
nodes of M(Gkr) and the heavy nodes of Gkr. Equation 1 can be rewritten as∑

v∈Vh(Gkr) d(v) = 2k+2|Vh(Gkr)| which clearly holds for undirected graphs also.
Thus,

∑
v∈V (M(Gkr)) d(v) = 2k+2|Vh(Gkr)|. Since |E(M(Gkr)| = k+ |Vh(Gkr)|,

Gkr contains k + |Vh(Gkr)| edge-disjoint chains. �

Theorem 4. |V (Gkr)| ≤ 30k2 + 2k.

Proof. Gkr contains exactly |Vh(Gkr)|+ k edge-disjoint chains (from Lemma 6)
none of which chain has length greater than 10k + 1 (from R5). Therefore
no chain contains more than 10k nodes of degree two. Therefore, |V2(Gkr)| ≤
10k(|Vh(Gkr)|+k) = 10k |Vh(Gkr)|+10k2. Now |V (Gkr)| = |V2(Gkr)|+|Vh(Gkr)|
≤ 10k|Vh(Gkr)| + 10k2 + |Vh(Gkr)|. But since |Vh(Gkr)| ≤ 2k it follows that
|V (Gkr)| ≤ 20k2 + 10k2 + 2k = 30k2 + 2k.

We use #(Gkr) to represent the number of embeddings of Gkr.

Lemma 7. #(Gkr) ≤ (2k + 1)!, where k = |E(Gkr)| − |V (Gkr)|.

Proof. It follows from the definition of an embedding and the fact that a objects
have (a− 1)! distinct clockwise orderings that #(Gkr) ≤

∏
v∈V (Gkr)(d(v)− 1)!.

Observe that 2 objects have only one distinct clockwise ordering. So,
∏

v∈V2(Gkr)
(d(v)−1)! = 1 and therefore #(Gkr) ≤

∏
v∈Vh(Gkr)(d(v)−1)!. In an effort to im-

prove readability henceforth we use P to denote the expression
∏

v∈Vh(Gkr)(d(v)−
1)! and let nh = |Vh(Gkr)|. Equation 1 can be rewritten as

∑
v∈Vh(Gkr) d(v) =

2k + 2nh. It follows that
∑

v∈Vh(Gkr) d(v)− 1 = 2k + nh.
Therefore P is the product of exactly 2k + nh integers, nh of which equal

1 and nh of which equal 2. So there are 2k − nh integers greater than 2 in the
product P. Consider the maximum value of P. Let y be the largest integer in P.
Lemma 5 states that d(v) ≤ 2k− nh + 3, ∀v ∈ Vh(Gkr), and so y ≤ 2k− nh + 2.

If y = 2k − nh + 2, then the 2k − nh integers greater than 2 in the P are
3, ..., 2k−nh +2 (because if x is an integer in the product P then x−1, x−2, ..., 2
must also in it). Therefore if y = 2k − nh + 2 then, P = (2k − nh + 2)! · 2nh−1.

If y < 2k − nh + 2 then the 2k − nh integers greater than 2 in P are 3, ..., y
and (2k − nh − y + 2) other integers all of which are less than or equal to y.
But the integers 3, ..., 2k − nh + 2 are the integers 3, ..., y and (2k − nh − y + 2)
other integers all of which are greater than y. Therefore if y < 2k−nh + 3, then
P < (2k − nh + 2)! · 2nh−1. Therefore P ≤ (2k − nh + 2)! · 2nh−1.

Lemma 4 states that 1 ≤ nh ≤ 2k. It is easy to show that (2k−nh+2)!·2nh−1

decreases as nh increases from 1 to 2k. Thus its maximum value in the range
nh = 1, . . . , 2k is at nh = 1. Therefore, P ≤ (2k−nh + 2)! · 2nh−1 ≤ (2k + 1)!. �

Fixed-Parameter Tractable Algorithms for Testing Upward Planarity 207

It follows that Gkr can be tested for upward planarity in O ((2k + 1)! · |V (Gkr)|)-
time. But |V (Gkr)| ≤ 30k2 + 2k (Theorem 4) so Gkr can be tested in
O

(
(2k + 1)! · k2

)
-time. As Gkr can be obtained from G in O(n2) time it fol-

lows that G can be tested for upward planarity in O
(
n2 + (2k + 1)! · k2

)
-time.

5 Polynomial Time Preprocessing Steps

In this section we use Euler’s upper bound on the number of edges in a planar
graph to give an upper bound on the number of edges in an UP digraph. We
also give an alternative proof of a theorem stating that for an acyclic digraph
k ∈ {−1, 0, 1} guarantees upward planarity, that is shorter than the original [18].

Theorem 5. Let G(V,E) be a simple connected digraph with s sources and t
sinks. Then G is UP only if |E| ≤ 3|V | − 5−max{s, t}.

Proof. G is UP if and only if it is a spanning subgraph of a planar st-digraph
(Theorem 1). As an st-digraph has exactly one source an edge must be added
to G to cancel out each “surplus” source in G. Therefore at least s − 1 edges
must added to G. If s − 1 edges are added to G then the resulting digraph G′

will have |V | nodes and |E| + s − 1 edges. But Euler has shown that a graph
with n nodes and m edges is planar only if m ≤ 3n − 6. It follows that G′ is
planar, and G is UP, only if, |E|+ s− 1 ≤ 3|V | − 6, which can be rewritten as
|E| ≤ 3|V | − s − 5. An analogous argument can be used to show that G is UP
only if |E| ≤ 3|V | − t− 5. �

Theorem 6 (Healy-English [18]). Let G be a connected acyclic digraph. If
|E(G)| − |V (G)| ∈ {−1, 0, 1} then G is upward planar.

Proof. Let G be a DAG with |E(G)| ≤ |V (G)|+ 1 and let Gkr be the kernel of
G. Thus |E(Gkr)| ≤ |V (Gkr)|+ 1. Suppose that |E(Gkr)| − |V (Gkr)| = 1. Thus
1 ≤ |Vh(Gkr)| ≤ 2 (Lemma 4). Therefore Gkr is upward planar if |E(Gkr)| −
|V (Gkr)| = 1 (Theorem 3). Thus all digraphs in K1 are UP. Each digraph in
Ki, where i < 1, is a subgraph of some digraph in K1. Therefore, all digraphs
in Kj , where j ≤ 1, are UP. It follows from the fact that reductions R1 - R5
are upward planarity invariant that every DAG G with |E(G)| ≤ |V (G)| + 1 is
upward planar. �

6 Conclusions

In this paper we have presented two FPT algorithms for testing the upward
planarity of DAGs. Moreover as their parameters are different they are each
efficient for a different subset of digraphs than the other. We have also identified
a class of non UP digraphs.

208 P. Healy and K. Lynch

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

2. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM Journal Comput. 31 (2001) 601 – 625

3. Battista, G.D., Liotta, G.: Upward planarity checking: “Faces are more than
polygons” (Extended Abstract). In Whitesides, S.H., ed.: Proceedings of the 6th
International Symposium on Graph Drawing. Volume 1547 of Lecture notes in
computer science., Springer-Verlag (1998) 72–86

4. Bertolazzi, P., Battista, G.D., Liotta, G., Mannino, C.: Upward drawings of tri-
connected digraphs. Algorithmica 6 (1994) 476–497

5. Bertolazzi, P., Battista, G.D., Mannino, C., Tamassia, R.: Optimal upward pla-
narity testing of single-source digraphs. SIAM Journal on Computing 27 (1998)
132–169

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer (1997)

7. Chan, H.: A parameterized algorithm for upward planarity testing. In: ESA(to
appear). (2004)

8. Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C.,
Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood,
D.R.: A fixed-parameter approach to two-layer planarization. In: Proceedings
of the 9th International Symposium on Graph Drawing. Volume 2265 of Lecture
Notes in Computer Science. (2001) 1–15

9. Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C.,
Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood,
D.R.: On the parameterized complexity of layered graph drawing. In: Proceedings
of the 9th Annual European Symposium on Algorithms. (2001) 488–499

10. Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-
sided crossing minimization revisited. In Liotta, G., ed.: Proceedings of the 11th
International Symposium on Graph Drawing. Volume 2912 of Lecture notes in
computer science., Springer-Verlag (2004) 332–344

11. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theoretical Computer Science 61 (1988) 175 – 198

12. Kelly, D.: Fundamentals of planar ordered sets. Discrete Math. 63 (1987) 197–216
13. Hopcroft, J., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM

Journal on Computing 2 (1973) 135–158
14. Battista, G.D., Tamassia, R.: On-line maintenance of triconnected components

with spqr-trees. Algorithmica 15 (1996) 302–318
15. Battista, G.D., Tamassia, R.: On-line planarity testing. SIAM Journal on Com-

puting 25 (1996) 956–997
16. Healy, P., Lynch, K.: Building blocks of upward planar digraphs. In: Proceedings

of the 12th International Symposium on Graph Drawing(to appear). Lecture notes
in computer science, (Springer-Verlag)

17. Healy, P., Lynch, W.K.: Investigations into upward planar digraphs.
Technical Report TR-04-02, Dept. of CSIS, University of Limerick,
http://www.csis.ul.ie/Research/TechRpts.htm (2004)

18. Healy, P., English, M.: Upward planarity of sparse graphs. In Brankovic, L., Ryan,
J., eds.: Proceedings of the Eleventh Australasian Workshop on Combinatorial
Algorithms. (2000) 191 – 203

Read/Write Based Fast-Path Transformation for
FCFS Mutual Exclusion

Prasad Jayanti1, Srdjan Petrovic1, and Neha Narula2

1 Department of Computer Science,Dartmouth College, Hanover, NH 03755, USA
{prasad, spetrovic}@cs.dartmouth.edu

2 Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
neha@google.com

Abstract. Lamport observed that in practical systems processes rarely
compete for the entry into the Critical Section [1]. This led to research on
fast mutual exclusion algorithms that, in the absence of contention, allow
a process to enter and exit the Critical Section in O(1) steps. Anderson
and Kim designed a general transformation that can turn any mutual
exclusion algorithm A into a new algorithm A′ that is fast [2]. Their
transformation, however, does not preserve the fairness property FCFS.
The main result of this paper is the design of a new transformation which
works similarly as Anderson and Kim’s, but additionally preserves FCFS.
Our transformation, like theirs, requires only read/write registers.

1 Introduction

In the N -process mutual exclusion problem [3], each asynchronous process re-
peatedly cycles through four sections of code—the Remainder Section, Entry
Section, Critical Section (CS) and Exit Section. In its basic version, the problem
is to design code for the Entry and Exit Sections so that the following safety
and liveness properties hold:

(M1). Mutual Exclusion: At any time, at most one process is in the CS.
(M2). Lockout-Freedom: A process in the Entry Section eventually en-

ters the CS, and a process in the Exit Section eventually enters the Remainder
Section.

Lockout freedom only states that all requests for entry to the CS are eventu-
ally satisfied. To ensure greater fairness, Lamport proposed an additional prop-
erty: requests for entry to the CS are satisfied in the order in which they are
made [4]. This first-come-first-served (FCFS) property is formalized by requiring
that the Entry Section consists of two fragments of code: a doorway followed by
a waiting room. The doorway should be such that any process can execute the
doorway to completion within a bounded number of its own steps. Then, the
FCFS property is stated as follows [4]:

(M3). FCFS: If a process q completes the doorway before a process p enters
the doorway, then p does not enter the CS before q.

Lamport [1] observed that in practical systems two or more processes rarely
compete for the entry into the CS. Thus, the common case is one of no contention:

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 209–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

210 P. Jayanti, S. Petrovic, and N. Narula

a process executes the mutual exclusion algorithm while all other processes are in
the Remainder Section. Lamport therefore proposed the fastness property which,
intuitively, requires the algorithm to be optimized for the common case. More
precisely:

(M4). Fastness: In the absence of contention, a process executes the Entry
and the Exit Sections in a constant number of steps, where the constant is
independent of the maximum number N of processes for which the algorithm is
designed [1].

When designing mutual exclusion algorithms for multiprocessor machines,
one must take into account an important trend in hardware technology—the
steadily growing gap between high processor speeds and the low speed/bandwidth
of the processor-memory interconnect [5]. Consequently, minimizing the number
of remote memory references has become the central goal of recent research on
mutual exclusion algorithms (in NUMA machines, a reference to a shared vari-
able X is remote if X is at a memory module of a different processor; in Cache-
Coherent machines, a reference is remote if it is not satisfied by the cache or if it
must invalidate another processor’s cache entry). Specifically, the following two
properties have become important:

(M5). Local-spin: Remote variables are not accessed in busywait loops.
(M6). Adaptivity: The RMR-complexity is the number of remote memory

references that a process generates when executing the Entry or the Exit Section.
The contention at time t is the number of processes executing the algorithm at
time t (i.e., the number of processes that are outside the Remainder Section
at time t). The adaptivity property requires that the RMR-complexity of an
execution of the Entry or Exit Section depends only on the maximum contention
during that execution, and not on the maximum number N of processes for which
the algorithm is designed.

In recent years, a number of algorithms have been designed to satisfy Prop-
erties M5 and M6 [2, 6, 7, 8, 9, 10, 11, 12, 13, 14]. A few of these algorithms [8, 9,
11, 13], in fact, satisfy an even stronger property than M6, stated as follows:

(M7). Constant-RMR: The RMR-complexity is O(1) (i.e., the complexity
does not depend on the contention nor does it depend on N).

Notice that constant-RMR (M7) implies adaptivity (M6) which, in turn,
implies fastness (M4).

1.1 The Result and Its Applications

The main result of this paper is an algorithm that transforms any mutual exclu-
sion algorithm A into a fast mutual exclusion algorithm A′ with the following
properties: (1) A′ preserves properties M1–M3 and M5–M7 of A, and (2) in the
absence of contention, a process executes only reads and writes in A′. The trans-
formation uses O(N) bounded read/write registers. This result is significant in
two ways:

(1). The transformation gives a general method to derive register-based fair
and fast mutual exclusion algorithms: by instantiating A with each of the known
FCFS algorithms, we can obtain different fast FCFS algorithms. For example, if

Read/Write Based Fast-Path Transformation for FCFS Mutual Exclusion 211

we instantiate A with Lamport’s Bakery algorithm [4], we get a fast FCFS
algorithm that has O(N) space complexity. In comparison, the only known
register-based fast FCFS algorithm, due to Afek, Stupp and Touitou [6], has
a worst-case space complexity of O(N4). (However, their algorithm is adaptive
on cache-coherent machines, and ours is not.) Instantiating A with Lycklama
and Hadzilacos’ FCFS algorithm [15], which uses only bounded registers, we
get a fast FCFS algorithm that uses only bounded registers. To the best of our
knowledge, this is the first such algorithm.

(2). All known constant-RMR algorithms (Mellor-Crummey and Scott [13],
Craig [11], Anderson [9], and Anderson and Kim [8]) are based on strong syn-
chronization primitives, which are known to take significantly longer to execute
than simple reads and writes [16]. Therefore, it is desirable to eliminate the use
of such instructions, especially in the common case of no contention. Our trans-
formation helps attain this goal. Specifically, if we apply our transformation to
any existing constant-RMR A, we get an algorithm A′ where, in the absence of
contention, a process executes only O(1) steps all of which are simple reads and
writes. Furthermore, A′ retains all of the good properties of A, including FCFS
and constant-RMR.

There is an earlier algorithm, due to Anderson and Kim, that transforms any
mutual exclusion algorithm into a fast mutual exclusion algorithm [2]. Their trans-
formation, however, does not preserve the FCFS property. Our transformation is
patterned after theirs: it has a similar structure and relies on the resettable split-
ter implementation that they invented. The difference is that our transformation
is equipped with an additional mechanism that helps preserve FCFS.

The remainder of the paper is organized as follows. In Section 2, we define
the primitives used in our transformation. Anderson and Kim’s transformation,
which is the starting point of our transformation, is described in Section 3, where
we also describe why their transformation fails to preserve the FCFS property.
Our transformation is described in Section 4.

2 Primitives Used in Our Transformation

Presence-Detectable FCFS Mutual Exclusion: A registered waiter is a
process that has completed the doorway, but has not yet entered the Critical
Section. A presence-detectable FCFS mutual exclusion algorithm allows a process
in the Critical Section to determine whether any registered waiters are currently
present. More specifically, it is an FCFS algorithm that supports the function
RWpresent(), which can be called by a process in the Critical Section. A process
should be able to execute this function in a bounded number of its own steps.
There are two requirements on this function, which are stated below.

Let I denote a time interval during which the function RWpresent() is exe-
cuted (by a process in the Critical Section). The two requirements are:

(RW1). If some process q is a registered waiter during the entire interval I,
then the function returns true.

(RW2). If no process is in the Entry Section (i.e., doorway or waiting room)
during the entire interval I, then the function returns false.

212 P. Jayanti, S. Petrovic, and N. Narula

These requirements are weak enough that FCFS algorithms can be easily
enhanced to support the function RWpresent(). In the full version of the paper
[17], we describe how this enhancement can be done for several known algorithms
[4, 8, 9, 11, 12, 13, 15] without affecting their RMR-complexity.

Resettable Splitter: A resettable splitter object, which extends Lamport’s
splitter [1], is due to Anderson and Kim [2] and may be described as follows. The
object supports two operations—Capture, which returns a boolean, and Release,
which has no return value. When a process wants to gain the ownership of the
(resettable) splitter, it invokes the Capture operation. If this operation returns
true, the process becomes the owner and remains so until it subsequently invokes
the Release operation. Regardless of whether Capture returns true or false, a pro-
cess is required to invoke the Release operation before invoking Capture again.
Below we specify the behavior of a splitter after a few simple definitions.

A process is active from the time it begins a Capture operation until the
time it completes the subsequent Release operation. A Capture operation is
successful if it returns true. A process owns a splitter from the time it completes
a successful Capture operation until the time it begins the subsequent Release
operation. The two properties of a splitter are now stated as follows:

(RS1). At most one process owns the splitter at any time.
(RS2). Let I denote a time interval during which a process executes the

Capture operation. If no process is active at any time in the interval I, then the
Capture operation succeeds.

Anderson and Kim [2] give an efficient register based implementation of a
splitter, stated as follows:

Theorem 1 ([2]). It is possible to implement a resettable splitter, shared by N
processes, using only read/write operations, under the assumption that at most
one process executes the Release operation at any time. A process completes a
Capture or a Release operation in O(1) steps, regardless of the speeds of other
processes. The space complexity is O(N).

Dynamic 2-Process FCFS Mutual Exclusion: In a system of N processes,
a dynamic 2-process mutual exclusion algorithm allows at most two processes to
execute the algorithm concurrently, but the identities of the two processes are
not fixed (i.e., the processes that execute the algorithm at time t need not be
the same as the processes that execute the algorithm at a different time). The
details are as follows.

The algorithm consists of four procedures, namely, Entry 2(i) and Exit 2(i),
where i is 0 or 1. A process p executes the algorithm by first assuming an identity
i from {0, 1}, and then executing Entry 2(i), the CS, and Exit 2(i). At any time,
at most one process may have the assumed identity of i, i ∈ {0, 1}.

Anderson and Young [18] give an efficient register-based dynamic 2-process
mutual exclusion algorithm, stated as follows:

Theorem 2 ([18]). There exists a dynamic 2-process mutual exclusion algo-
rithm that uses only registers, and satisfies properties M1–M7. The space com-
plexity of the algorithm is O(N).

Read/Write Based Fast-Path Transformation for FCFS Mutual Exclusion 213

Shared variables
infast: boolean;

Underlying Algorithms
X : Resettable Splitter implemented by Anderson and Kim’s algorithm

by Theorem 1 (supports Capture and Release operations)
2-mutex : Dynamic 2-process mutual exclusion algorithm that satisfies Properties

M1 and M2 (consists of Entry 2 and Exit 2 procedures)
N-mutex : N -process mutual exclusion algorithm that satisfies Properties M1

and M2 (consists of Entry N and Exit N procedures)
Initialization

infast = false;

loop FastPath() SlowPath()
0: Remainder Section 6: infast = true 12: Entry N(p)
1: if ¬Capture(p, X) 7: Entry 2(0) 13: Entry 2(1)
2: SlowPath() 8: CS 14: CS
3: else if infast 9: Release(p, X) 15: Release(p, X)
4: SlowPath() 10: Exit 2(0) 16: Exit 2(1)
5: else FastPath() 11: infast = false 17: Exit N(p)

forever

Fig. 1. Anderson and Kim’s algorithm that transforms any mutual exclusion algorithm
into a fast mutual exclusion algorithm

3 Anderson and Kim’s Algorithm

Anderson and Kim’s algorithm [2], which transforms any mutual exclusion al-
gorithm into a fast mutual exclusion algorithm, is the foundation for our main
algorithm. In this section, we therefore briefly review their algorithm and explain
why it does not preserve the FCFS property.

The basic idea of Anderson and Kim’s algorithm [2], presented in Figure 1,
is as follows.1 A process first determines if it is executing alone. If it is, then it
executes the fast path, otherwise it executes the slow path. Multiple processes
that concurrently execute the slow path compete via the N-mutex algorithm.
The winner q of this competition proceeds to compete with the fast-path process
r through the 2-mutex algorithm. The winner between q and r enters the CS.
Below we informally describe how this idea is implemented with the help of a
resettable splitter X and a shared variable infast.

A process p attempts to become the owner of the splitter X (Line 1). If it
is unsuccessful, p is certain that some other process is also active and therefore
takes the slow path (Line 2). Even if p acquires the ownership of the splitter,
it does not immediately enter the fast path because another process q may be
already in the fast path (this is possible because q releases the splitter, on Line 9,
while it is still in the fast path). So p inspects the infast variable to determine

1 Anderson and Kim presented their algorithm with the splitter implementation inte-
grated into the rest of the code. In Figure 1, we presented their algorithm modularly,
abstracting the splitter out as an object.

214 P. Jayanti, S. Petrovic, and N. Narula

if another process is in the fast path (Line 3). If there is such a process, there
is clearly contention and so p feels justified in taking the slow path (Line 4).
Otherwise, the fast path is clear and p enters it (Line 5).

In the fast path, p first sets the infast variable to announce that the fast
path is occupied (Line 6). As previously explained, p competes with the winner
of the slow-path processes by participating in the 2-mutex algorithm (Line 7).
When successful, it enters the CS (Line 8). Then, on Line 9, p releases the
splitter when it still has exclusive access to the CS. This action ensures that p’s
Release operation is not concurrent with any other Release, as required by the
splitter implementation (see Theorem 1). Finally, p exits the 2-mutex algorithm
(Line 10) and unsets the infast variable to indicate that the fast path is no
longer occupied (Line 11).

If p takes the slow path, it competes with other slow-path processes via
the N-mutex algorithm (Line 12). When successful, p enters another competi-
tion, where it competes with the fast-path process via the 2-mutex algorithm
(Line 13). Whenever it succeeds, it enters the CS (Line 14). Then, on Line 15,
p releases the splitter when it still has exclusive access to the CS. As mentioned
earlier, this action ensures that p’s Release operation is not concurrent with any
other Release, as required by the splitter implementation. Finally, it exits the
2-mutex algorithm and then the N-mutex algorithm (Lines 16 and 17).

Why Anderson and Kim’s Algorithm Does Not Preserve the FCFS
Property: Below we give a scenario in which Anderson and Kim’s algorithm
violates FCFS, even if the underlying N-mutex and 2-mutex algorithms satisfy
FCFS. Our argument rests on the observation that the doorway, regardless of
how it is chosen, cannot extend past Line 12 because Entry N is an unbounded
section of code.

Suppose that a process p enters the CS through the fast path. While p is
in the CS, suppose that a process q enters and proceeds through the slow path
up to the completion of Entry N. Thus, q has completed executing the doorway.
Now suppose that p exits the CS, goes back to the Remainder Section, and
then reenters the algorithm. An important observation is that, even though q
is active, the definition of the splitter (and its implementation in Anderson and
Kim’s algorithm) allows p to successfully capture the splitter. Accordingly, p
enters the fast path and executes Entry 2(0). Recall that q has not yet begun
executing Entry 2(1). Consequently, supposing that p runs alone, it completes
Entry 2(0) and enters the CS. This, however, violates FCFS: even though q
had completed the doorway before p reentered the algorithm, p entered the CS
before q.

Intuitively, FCFS is violated because p failed to observe that there is already
a process q in the slow path beyond the doorway. To prevent such a scenario,
our algorithm in the next section will include a mechanism by which entering
processes such as p can detect the presence of processes in the slow path that
have advanced past the doorway.

Read/Write Based Fast-Path Transformation for FCFS Mutual Exclusion 215

Shared variables
infast: boolean; rw: array [0 . . 1] of boolean;

Underlying Algorithms
X : Resettable Splitter implemented by Anderson and Kim’s algorithm

by Theorem 1 (supports Capture and Release operations)
2-mutex : Dynamic 2-process FCFS mutual exclusion algorithm that satisfies

Properties M1–M3 (consists of Entry 2 and Exit 2 procedures)
N-mutex : Presence-detectable N -process FCFS mutual exclusion algorithm that

satisfies Properties M1–M3 (consists of Doorway N, WaitingRoom N,
Exit N and RWpresent N procedures)

Initialization
infast = false; rw[0] = false; rw[1] = false

loop FastPath() SlowPath()
0: Remainder Section 10: infast = true 16: Doorway N(p)
1: if ¬Capture(p, X) 11: Entry 2(0) 17: rw[0] = true
2: SlowPath() 12: CS 18: rw[1] = true
3: else if infast 13: Release(p, X) 19: WaitingRoom N(p)
4: SlowPath() 14: Exit 2(0) 20: Entry 2(1)
5: else if rw[0] 15: infast = false 21: CS
6: SlowPath() 22: if ¬RWpresent N(p)
7: else if rw[1] 23: rw[0] = false
8: SlowPath() 24: if ¬RWpresent N(p)
9: else FastPath() 25: rw[1] = false

forever 26: Release(p, X)
27: Exit 2(1)
28: Exit N(p)

Fig. 2. The new algorithm that transforms any FCFS mutual exclusion algorithm into
a fast FCFS mutual exclusion algorithm

4 Our Algorithm

Our algorithm is presented in Figure 2. It transforms any presence-detectable
FCFS mutual exclusion algorithm into a fast FCFS mutual exclusion algorithm.
This algorithm has a similar structure as Anderson and Kim’s, but employs two
additional variables, rw[0] and rw[1]. These variables are used to keep track of
whether there are any registered waiters in the slow path (recall that a registered
waiter is a process that has completed the doorway, but has not yet entered the
CS). In the following, we first state two crucial properties that these variables
satisfy, and then show how these properties help achieve FCFS.

We begin by specifying the doorway with respect to which our algorithm
satisfies the FCFS property.

Definition of the doorway: For a process entering the CS by the fast path, the
doorway consists of Lines 1–10 and the doorway of the Entry 2(0) section.
For a process entering the CS by the slow path, the doorway consists of Lines
1–8 and Lines 16–18.

216 P. Jayanti, S. Petrovic, and N. Narula

Properties of rw Variables: The boolean variables rw[0] and rw[1] keep track
of whether there are any registered waiters in the slow path. Specifically, they
satisfy the following two properties:

(P1). If I is a time interval during which a process is a registered waiter in
the slow path, either rw[0] is true throughout I or rw[1] is true throughout I.

(P2). If there is no process in the slow path (i.e., there is no process between
Lines 16 and 28), then both rw[0] and rw[1] have the value false.

For an intuitive understanding of why the above two properties hold, we turn
to the implementation of the slow path and examine how the variables rw[0] and
rw[1] are manipulated.

Property P1 requires that at least one of the rw variables remains true during
the entire interval in which a process is a registered waiter in the slow path.
To help satisfy this property, a process p sets both rw variables to true in the
doorway (Lines 17 and 18). However, Property P2 requires that both rw variables
be false whenever the slow path is unoccupied. To help satisfy this property, after
a process exits the CS, it sets the rw variables to false. But, performing this action
unconditionally can cause both rw variables to become false even when there is
already a registered waiter, thus violating P1. For this reason, before setting
either rw variable to false (on Line 23 or 25), p calls RWpresent N() to check
that there are no registered waiters in the slow path. (Process p can perform
this check by calling RWpresent N() because, by the definition of the doorway,
a registered waiter in the slow path is also a registered waiter of N-mutex.)
It is a subtle feature of the algorithm that the same check is performed twice,
once before setting rw[0] and once more before setting rw[1] (Lines 22–25). This
feature helps ensure Property P1, as the next paragraph explains.

We now informally describe why P1 holds. Suppose that a process p writes
true in rw[0] and rw[1] (Lines 17 and 18) and then enters the waiting room to
become a registered waiter. Before p leaves the N-mutex waiting room (Line 19),
suppose that one of the rw variables is overwritten with a value of false. Assume
that rw[0] is the first variable to be so overwritten and q is the process that
overwrites it by executing Line 23 (the argument would be analogous if rw[1] were
the first variable to be overwritten). The important feature of the algorithm is
that no process will be able to overwrite the other rw variable, namely, rw[1], with
false, before p leaves the N-mutex waiting room. This is because any overwriting
of rw[1] (Line 25) is preceded by a call to RWpresent N() that occurs after q has
overwritten rw[0]. Thus, this call to RWpresent N() occurs after p has completed
the N-mutex doorway (Line 16) and before p leaves the N-mutex waiting room.
As a result, RWpresent N() returns true, preventing Line 25 from being executed.
In conclusion, at most one rw variable is overwritten with false before p leaves
the N-mutex waiting room (Line 19). While p executes Line 20, neither rw
variable is overwritten with false because, by the mutual exclusion property of
the N-mutex algorithm, no other process is between Lines 20–27. Hence, we
have Property P1.

Read/Write Based Fast-Path Transformation for FCFS Mutual Exclusion 217

We now turn to Property P2. This property states that if there is no process
in the slow path, then both rw[0] and rw[1] have the value false. Intuitively, this
property holds because the last slow-path process p to leave the CS finds that
there are no processes in the slow-path waiting room (more precisely, p’s calls
to RWpresent N() on Lines 22 and 24 return false) and, hence, p sets rw[0] and
rw[1] to false (on Lines 23 and 25).

How FCFS is Ensured: We now explain informally why the algorithm satisfies
FCFS. Suppose that FCFS does not hold, i.e., that the following statement is
true:

Statement S: There exist some processes p and q such that q is a registered
waiter when p enters the doorway, and yet p enters the CS before q.

We consider two cases, corresponding to whether q is a fast-path process or a
slow-path process. Consider the case that q is a fast-path processes. Since q owns
the splitter when p enters the doorway, p enters the CS via slow path. Further,
since q is a registered waiter in the fast path when p enters the doorway, it
follows that q has completed the 2-mutex doorway of Line 11 before p executes
Line 1 and, therefore, before p enters the 2-mutex doorway of Line 20. Then, by
the FCFS property of the 2-mutex algorithm, p does not enter the CS on Line
21 before q enters the CS on Line 12, contradicting S.

Consider the case that q is a slow-path process. By Property P1, one of rw[0]
and rw[1] holds true until q enters the CS. Consequently, when p reads rw[0] on
Line 5 and rw[1] on Line 7, it finds one of them to be true, and, as a result,
takes the slow path. Since q is a registered waiter in the slow path when p enters
the doorway, it follows that q has completed the N-mutex doorway on Line 16
before p executes Line 1 and, therefore, before p enters the N-mutex doorway
on Line 16. Then, by the FCFS property of the N-mutex algorithm, p does not
enter the CS on Line 21 before q enters the CS on Line 21, contradicting S.

The Main Theorem: Below, we state the theorem that summarizes the main
properties of our algorithm. The proof of the theorem is presented in the full
version of the paper [17].

Theorem 3. Let A be a presence-detectable mutual exclusion algorithm sat-
isfying properties M1–M3. Let B be Anderson and Young’s 2-process mutual
exclusion algorithm from Theorem 2. Let A′ be the algorithm obtained by replac-
ing N-mutex and 2-mutex in Figure 2 with A and B, respectively. Then, the
following statements are true:

1. A′ satisfies properties M1–M3.
2. A′ is fast (i.e., A′ satisfies property M4).
3. If A satisfies any of properties M5–M7, A′ also satisfies that property.
4. In the absence of contention, a process executes only reads and writes in A′.

Acknowledgments. We thank the anonymous SOFSEM referees for their valu-
able comments on an earlier version of this paper.

218 P. Jayanti, S. Petrovic, and N. Narula

References

1. Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems 5 (1987) 1–11

2. Anderson, J., Kim, Y.J.: A new fast-path mechanism for mutual exclusion. Dis-
tributed Computing 14 (2001) 17–29

3. Dijkstra, E.: Solution of a problem in concurrent programming control. Commu-
nications of the ACM 8 (1965) 569

4. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM 17 (1974) 453–455

5. Culler, D., Singh, J., Gupta, A.: Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan-Kaufmann (1998)

6. Afek, Y., Stupp, G., Touitou, D.: Long-lived and adaptive collect with applications.
In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science. (1999) 262–272

7. Anderson, J., Kim, Y.J.: Adaptive mutual exclusion with local spinning. In: Pro-
ceedings of the 14th International Symposium on Distributed Computing. (2000)
29–43

8. Anderson, J., Kim, Y.J.: Local-spin mutual exclusion using fetch-and-φ primitives.
Unpublished manuscript (2002)

9. Anderson, T.: The performance of spin lock alternatives for shared memory mul-
tiprocessors. IEEE Transactions on Parallel and Distributed Systems 1 (1990)
6–16

10. Attiya, H., Bortnikov, V.: Adaptive and efficient mutual exclusion. In: Proceedings
of the 19th Annual Symposium on Principles of Distributed Computing. (2000)

11. Craig, T.S.: Queuing spin-lock algorithms to support timing predictability. In:
Proceedings of the Real Time Systems Symposium. (1993) 148–157

12. Jayanti, P.: f-arrays: implementation and applications. In: Proceedings of the 21st
Annual Symposium on Principles of Distributed Computing. (2002) 270–279

13. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems 9
(1991) 21–65

14. Scott, M.L.: Non-blocking timeout in scalable queue-based spin locks. In: Pro-
ceedings of the 21st Annual Symposium on Principles of Distributed Computing.
(2002)

15. Lycklama, E., Hadzilacos, V.: A first-come-first-served mutual-exclusion algorithm
with small communication variables. ACM Transactions on Programming Lan-
guages and Systems 13 (1991) 558–576

16. Bershad, B.N.: Practical considerations for non-blocking concurrent objects. In:
Proceedings of the 13th IEEE International Conference on Distributed Computing
Systems. (1993) 264–273

17. Jayanti, P., Petrovic, S., Narula, N.: Read/write based fast-path transformation
for FCFS mutual exclusion. Technical Report TR 2004 522, Dartmouth College
Computer Science Department (2004)

18. Yang, J.H., Anderson, J.: A fast, scalable mutual exclusion algorithm. Distributed
Computing 9 (1995) 51–60

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 219 – 228, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Adjustment of Indirect Association Rules for the Web

Przemysław Kazienko and Mariusz Matrejek

Wrocław University of Technology, Department of Information Systems,
Wybrze e S. Wyspia skiego 27, 50-370 Wrocław, Poland
kazienko@pwr.wroc.pl, matrejekm@adapt.pl

Abstract. Indirect association rules are the extension of classic association
rules that enables to discover indirect relationships existing between objects. To
estimate the importance of individual parameters of the indirect association
rules mining, experiments were carried out on historical web user sessions
coming from an e-commerce portal. The influence of parameters of standard
direct rules: direct support and direct confidence thresholds, was studied and it
was proved that greater values of these two thresholds could significantly
decrease the final quantity of indirect rules. This reduction may be additionally
strengthened by the introduction of additional threshold to complete or partial
indirect confidence. The choice of calculation method for partial indirect
confidence was also examined and the multiplication method was selected as
the most discriminative.

1 Introduction

Indirect association rules are the extension of standard, direct association rules.
Association rules in classic meaning are one of the most popular data mining methods,
well described in many papers and there are several algorithms for rule discovering like
apriori [2], Eclat [16], FP Growth [4]. The first algorithms were not able to solve some
specific problems such as maintaining rules for continuously changing data sets. In
consequence incremental algorithms were proposed e.g. FUP [3] or DLG [15].

The main application domain of association rules is the market basket analysis but
they are also useful in the web environment for discovering regularities in user
behaviors hidden in web logs [1, 10, 14]. Original association rule method,
implemented to the web, was expanded to indirect association rules concept in [12, 13]
but another approach to indirect associations was presented in [5, 6, 7]. This enabled to
discover relationships between web pages, which are not taken into consideration by
direct rules. Indirect rules are useful especially in case of short ranking lists in
e-commerce recommender systems, when direct rules deliver to few suggestions [7].

2 Direct and Indirect Association Rules

Definition 1. Let di be an independent web page (document) and D be web site content
(web page domain) that consists of independent web pages di∈D.

Definition 2. A set X of pages di∈D is called a pageset X. Pageset does not contain
repetitions: ∀(di,dj∈D) (di,dj∈X di≠dj). The number of pages in a pageset is called the
length of the pageset. A pageset with the length k is denoted by k-pageset.

P. Kazienko and M. Matrejek 220

Definition 3. The i-th user session Si is the pageset containing all pages viewed by the
user during one visit in the web site; Si⊆D. SS is the set of all user sessions gathered by
the system, Si∈SS. Each session must consist of at least two pages card(Si) 2. A session
Si contains the pageset X if and only if X⊆Si.

Sessions correspond to transactions in typical data mining approach [3, 11]. Note that
pagesets and user sessions are unordered and without repetitions – we turn navigational
sequences (paths) into sets. Additionally, user sessions may also be filtered to omit too
short ones, which are not representative enough [8, 9].

Definition 4. A direct association rule is the implication X Y, where X⊆D, Y⊆D and
X∩Y=∅. A direct association rule is described by two measures: support and confidence.
The direct association rule X Y has the support sup(X Y)=sup(X∪Y)/card(SS); where
sup(X∪Y) is the number of sessions Si containing both X and Y; X∪Y∈Si. The confidence
con for direct association rule X Y is the probability that the session Si containing X also
contains Y: con(X Y)=sup(X∪Y)/sup(X); sup(X) – the number of sessions that contain the
pageset X. The pageset X is the body and Y is the head of the rule.

Direct association rules represent regularities discovered from a large data set [2].
The problem of mining association rules is to extract rules that are strong enough and
have the support and confidence value greater than given thresholds: minimal direct
support supmin and minimal direct confidence conmin. In this paper, we consider
dependencies only between 1-pagesets – single web pages, so the 1-pageset X including
di (X={di}) will be denoted by di and a direct association rule from di to dj is di dj.

Definition 5. Partial indirect association rule di

P#dj,dk is the indirect implication from di
to dj with respect to dk, for which exist two direct association rules: di dk and dk dj with
sup(di dk) supmin, con(di dk) conmin and sup(dk dj) supmin, con(dk dj) conmin,
where di,dj,dk∈D; di dj dk. The page dk, in the partial indirect association rule di

P#dj,dk, is
called the transitive page (Fig. 1).

di dk djdirect association rule: di–›dk,
con(di–›dk)

direct association rule: dk–›dj,
con(dk–›dj)

partial indirect association rule:
di –›P#dj,dk conP#(di –›P#dj,dk)

Transitive page

Fig. 1. Indirect association between two web pages

Please note that for the chosen pair of pages di,dj there may be many transitive pages
dk and as a result many partial indirect association rules di

P#dj,dk.
Each indirect association rule is described by the partial indirect confidence

conP#(di

P#dj,dk), as follows:

conP#(di

P#dj,dk) = con(di dk) * con(dk dj) (1)

Pages di,dj in di

P#dj,dk do not need to have any common sessions, but in (1) we
respect only “good” direct associations to ensure that indirect associations are based on

Adjustment of Indirect Association Rules for the Web

221

sensible grounds. From questionable or uncertain direct knowledge we should not
derive reasonable indirect knowledge. In consequence, it was assumed rules di dk and
dk dj must be “strong” enough, so that con(di dk) and con(dk dj) exceed conmin.

The partial indirect confidence is calculated using direct confidence without access to
source user sessions, so the computational complexity of partial indirect rule mining is
much less than for direct ones.

Definition 6. The set of all possible transitive pages dk for which partial indirect
association rules from di to dj exists, is called Tij (Fig. 2).

Note that Tij is not the same set as Tji.

Definition 7. Complete indirect association rule di

#dj aggregates all partial indirect
association rules from di to dj with respect to all existing transitive pages dk∈Tij and it is
characterized by complete indirect confidence - con#(di

#dj):

con#(di

#dj)=
()()

T

Tcard

k kj
P

i
P

max

dddcon
ij

=
→

1

,
 (2)

where maxT = ()()ij
Ddd

Tcard
ji ∈,

max . This is the normalized sum of all existing partial rules.

Tij

di dj

transitive pages dk

complete indirect association rule

partial indirect association rules

Fig. 2. Complete indirect association rule

Only indirect rules with complete indirect confidence greater than the given
confidence threshold - iconmin are accepted. A complete indirect association rule from
di to dj exists if and only if it exists at least one partial indirect association rule from di to
dj. Note that complete indirect association rules are not symmetric: the rule di

#dj
may exists but the reverse one dj

#di not necessarily. It results from features of partial
indirect associations and direct associations, which also are not symmetric.

To enable the usage of both direct and indirect association rules e.g. for
recommendation of web pages, the joined, complex association rules are introduced
[6, 7]. They combine main parameters of direct and indirect rules – confidences.

Definition 8. Complex association rule di

*dj from di to dj exists, if direct di dj or
complete indirect di

#dj association rule from di to dj exists. A complex association
rule is characterized by complex confidence - con*(di

*dj), as follows:

con*(di

*dj) =
()

()
()

()
→

+
→

#

##

*
2

1

conavg

ddcon

conavg

ddcon jiji (3)

P. Kazienko and M. Matrejek 222

where avg(con) and avg(con#) are average values of all con(di dj) and con#(di

#dj),
respectively. Normalization based on average values was introduced to make domains
of both direct and indirect confidence more comparable. It results from significant
differences between values of direct and indirect confidence. Values of indirect
confidence are smaller than direct ones according to (1) and (2), see Tab. 1.

Values of con*(di

*dj) may exceed 1 and to transfer the domain of complex
confidence into the range [0,1], we would need to normalize (3) with the maximum
value of complex confidence. However, the normalization is not necessary for the
research presented in following sections and for that reason it was not included in (3).

3 Adjustment of Mining of Indirect Rules

The main research has been conducted on real web session logs coming from one of
the largest polish online computer store. The session data extracted from text files
were cleaned to exclude 1-page sessions and enormous big sessions so that HTTP
requests from search engine spiders would be removed. Finally, the set of 4,200 pages
and about 100,000 user sessions was obtained. However, only 22,000 sessions
containing first 500 pages were used for further experiments to shorten the time of
experiments. An average session consisted of 9 pages. Indirect rules were mined
using IDARM algorithm described in [5].

3.1 Minimal Support – supmin, Minimal Confidence – conmin

Direct rule mining is a part of indirect association rule mining process. Threshold
values for direct rules: supmin and conmin can be crucial for discovering indirect
associations. The minimum support value supmin is the first step in selection of
candidates for direct rules, while the minimum confidence value conmin determines
the “strength” and usefulness of the rule. They both have a significant influence on
the quantity of discovered complete indirect rules (Fig. 3).

0%

20%

40%

60%

80%

0% 20
%

40
%

60
%

80
%

10
0

Threshold value

Pe
rc

en
ta

ge
 o

f
in

di
re

ct
 r

ul
es

conmin

0%

20%

40%

60%

80%

0.
00

%

0.
04

%

0.
08

%

0.
12

%

0.
16

%

0.
20

%

Threshold value

Pe
rc

en
ta

ge
 o

f
in

di
re

ct
 r

ul
es

supmin

Fig. 3. Percentage of all possible (249,500) complete indirect rules discovered in relation to
supmin (left) and conmin values (right)

Adjustment of Indirect Association Rules for the Web

223

3.2 Methods of Calculation of Partial Indirect Confidence

In accordance with definition 5, the confidence of a partial indirect association rule
respects both direct rules, which are involved in an indirect association. Their
contribution is fixed by (1) to the simple multiplication, but we suggest considering
other formulas for estimation of partial indirect confidence.

a)

di didi
di

dk

dj

dk dkdk

dj djdj

b) c) d)

+ +

+

- +

?

- -

-

+ -

?

dir

indir

dir

indir indir indir

dir dir dir dir dir dir

Fig. 4. Possible cases of relationships between opening and closing rule in partial indirect
association rule. The width of the line and a “+” or ”-“ sign correspond to the confidence value

We can distinguish several cases of relations between confidence values of both
direct rules engaged in indirect association (Fig. 4). Two kinds of rules were
considered: “strong” rules, which confidence values are greater than the average, and
“weak” rules with confidence values smaller than the average. Strong and weak rules
can provide following cases in the estimation of partial indirect confidence:

 both component direct rules are strong (the “+” sign and a thick line on the
Fig. 4): the partial indirect rule is also strong (Fig. 4a);

 both direct rules are weak (“-”, a thin line on the Fig. 4): the partial indirect rule
is very weak and it is about to be cut by the threshold iconmin (Fig. 4b);

 the first (opening) direct rule is strong and the second (closing) one is weak or
inversely: the partial indirect rule can be either weak or strong depending on the
concrete values of direct confidences (Fig. 4c,d).

Table 1. Values of partial indirect confidence for different methods of calculation

Method of estimation of partial indirect confidence conP#Association Direct con.
first, second Multipl. Arith.mean Max Min Weighted

- - 0.20, 0.20 0.04 0.20 0.20 0.20 0.20

+ - 0.75, 0.20 0.15 0.48 0.75 0.20 0.57

- + 0.20, 0.75 0.15 0.48 0.75 0.20 0.39

+ + 0.75, 0.90 0.68 0.83 0.90 0.75 0.80

1 + 1.00, 0.50 0.50 0.75 1.00 0.50 0.83

+ 1 0.50, 1.00 0.50 0.75 1.00 0.50 0.66

P. Kazienko and M. Matrejek 224

Following methods of estimation of partial indirect confidence can be considered
(see examples in Tab.1):

 multiplication – both direct associations have the same contribution (1),
 maximal value – the weaker rule has no matter:

conP#(di

P#dj,dk) = max(con(di dk);con(dk dj)), (4)

 minimal value – the stronger rule has no matter:

conP#(di

P#dj,dk) = min(con(di dk);con(dk dj)), (5)

 arithmetical mean – both direct associations have the same contribution:

conP#(di

P#dj,dk) = 0.5*(con(di dk)+con(dk dj)), (6)
 weighted mean – direct associations have different contributions depended on
their positions in the indirect association:

conP#(di

P#dj,dk) =
3

2
(con(di dk)+ 3

1
con(dk dj)) (7)

Please note that multiplication provides the smallest values of partial indirect
confidences (Tab.1) and it was confirmed for real test data (Fig. 5): the smallest
average confidence value (0.035) but the best discrimination abilities – the standard
deviation (0.081) doubles the average. This last feature of multiplication determined
that (1) appeared to be the most appropriate for further processing.

0.198

0.242

0.088
0.365

0.081

00.10.20.30.40.5

0.035

0.058

0.315

0.474

0.266

0 0.1 0.2 0.3 0.4 0.5

Multiplication

Arithm. mean

Max

Min

Weighted mean

Average partial indirect confidence Standard deviation

Fig. 5. The average partial indirect confidence and its standard deviation calculated using
methods from Tab. 1. Minimal support supmin=0.0002 and minimal confidence conmin=0.01

Arithmetical mean and weighted mean deliver information about same
characteristics of test data set. The average value for weighted mean (0.315) is greater
than for arithmetical mean (0.266). This reveals that the direct rule opening indirect
association has statistically greater direct confidence value than the closing one.

3.3 Minimal Complete Indirect Confidence – iconmin

The minimal complete indirect confidence iconmin is a threshold corresponding to
minimal direct confidence conmin in direct rules. The significant problem at indirect

Adjustment of Indirect Association Rules for the Web

225

association rules mining is similar like at direct associations: to find appropriate
values for thresholds or otherwise results could be useless. The value of complete
confidence threshold iconmin should not be less than the square of direct confidence
threshold conmin – see (1). Additionally, according to (2), there is no point in setting
iconmin with the value less than conmin2/maxT, because no rule would be rejected. The
introduction of minimal indirect confidence iconmin significantly reduces the amount of
complete indirect rules discovered (Fig. 6). The simultaneous usage of all 3 thresholds:
supmin, conmin and iconmin allow reducing the result set even more. This should
shorten the time needed to perform the whole process of indirect association rules
mining. The threshold iconmin significantly influences on the number of direct rules,
which are strengthened in complex rules (3). Its influence on the quantity of
weakened rules is minimal (Fig. 7).

0.10%

1.00%

10.00%

100.00%

0.
00

%
0.

25
%

0.
50

%
0.

75
%

1.
00

%
1.

25
%

1.
50

%
1.

75
%

2.
00

%
2.

25
%

2.
50

%
2.

75
%

3.
00

%
3.

25
%

3.
50

%
3.

75
%

4.
00

%
4.

25
%

4.
50

%
iconmin

without thresholds

with thresholds

Fig. 6. Percentage of all possible (249,500) complete rules discovered in relation to iconmin;
without thresholds (dotted line) or with supmin=0.008% and conmin=2% (constant line)

0%

15%

30%

45%

60%

75%

90%

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

1.
2%

1.
4%

1.
6%

1.
8%

2.
0%

2.
2%

2.
4%

2.
6%

iconmin

no changes

strenghtened
weakened

Fig. 7. Percentage of all discovered direct rules (4,500), which were strengthened or weakened
in relation to minimal indirect confidence iconmin; supmin=0.02% and conmin=0.2%

P. Kazienko and M. Matrejek 226

3.4 Cut Point

During indirect association rules mining two kinds of indirect association rules are
processed. The former are partial and the latter are complete indirect association rules.
The number of partial rules can be very large. Performed experiments revealed that
there could be even 370,000 partial indirect associations, mostly with very small
partial confidence, derived from only 6,000 direct rules. The question about
exchanging complete indirect confidence threshold with partial indirect confidence
threshold seems to be legitimate. If we look closer at the process of discovering
complete indirect rules, we can see that all partial confidences are estimated before
the iconmin threshold is applied. This approach provides the information about all
partial indirect rules, which can support complete association, even if the partial ones’
confidences are very small. Yet another approach is to introduce partial indirect
confidence threshold piconmin and to cut most of partial rules as soon as possible.
Obviously, the value of piconmin should be from the range [0;1] Such threshold can
reduce the time of discovering complete rules, but there is a danger that we loose too
many “small” partial rules. On the other hand, why should we eliminate partial rules
with small confidences, if we already cut many weak association using direct support
and direct confidence thresholds? Such filtering could have been even more selective
than the use of threshold to partial indirect rules. Both indirect thresholds (iconmin
and piconmin) are actually similar. They operate on previously generated and filtered
direct association rules set and they do not require any recalculation of this set.

The introduction of partial indirect threshold piconmin to the test data decreased
significantly the number of partial rules: by 12.3% for piconmin=1% and 92.3% for
piconmin=20% (Fig. 8).

87.7%

7.7%
17.7%

44.6%

100.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0% 1% 5% 10% 20%
piconmin

P
er

ce
nt

ag
e

of
 p

ar
ti

al
in

di
re

ct
 r

ul
es

Fig. 8. The percentage of discovered partial indirect rules (100%=6500 rules) in relation to
partial indirect threshold piconmin; supmin=0,02%; conmin=5%

3.5 Normalization

Complete indirect confidence (2) is the sum of all partial indirect confidences
normalized with the given factor u. We strongly recommend to normalize the values
of complete indirect confidence to avoid situations it exceeds out of the range [0;1]. In
original indirect association rules mining u is the size of the bigger transitive pages set
u=max(card(Tij)) [6, 7].

Adjustment of Indirect Association Rules for the Web

227

In different environments, the mining of indirect associations may result in smaller,
or larger number of transitive pages. It has to be decided, whether associations with
many transitive pages and smaller partial confidence are better or worse than
associations with only several transitive pages but with a greater confidence. We can
use different methods of normalization in (2) to “promote” or “demote” various types
of discovered associations:

1. Global normalization using constant value of u, common for the whole base set
of elements and sessions – used in (1). Sum of all partial values is divided by the
size of the largest transitive page set. It is essential for this approach that the
factor u is different for every environment (every set of indirect rules). The
change of any threshold – supmin, conmin or iconmin changes the value of u.

2. Global normalization using constant value among the same base set of pages and
sessions. In this normalization factor u is independent from any parameter of the
method, so supmin, conmin, iconmin can be adjusted without influence on u
value. An example of such factor is the number of all possible transitive pages.
Naturally, the factor u changes for sets with different cardinality.

3. Global normalization using constant value among different base sets u=const.
This kind of normalization uses constant factor u, independent from cardinality of
base set and any other parameter, e.g. u=5000. Such normalization is
questionable since factor u could not be great enough to ensure results from the
range [0;1] in some specific environments.

4. Local normalization using variable. Different values of factor u for each single
complete indirect association rule di

#dj are used in this approach. An example
of such factor is the cardinality of transitive page set for current complete
association u=card(Tij). Using this way of normalization we loose information
about the number of transitive pages for individual indirect association rule.

The normalization by the local variable or the global constant (cases 4 and 1)
delivers us greater values of the average indirect complete confidence. It comes from
the usually greater value of the factor u for the two other methods (cases 2 and 3).

4 Conclusions and Future Work

Indirect association rule mining is a new and promising data mining technique.
Research results presented in the paper provide some useful information about crucial
features of indirect associations. Firstly, the number, and in consequence also the
quality of discovered indirect rules can be adjusted by either minimal direct support
and confidence thresholds (Fig. 3) or minimal indirect confidence (Fig. 6) or minimal
partial indirect confidence (Fig. 8) separately or by using all of these four thresholds
simultaneously. Secondly, the multiplication as the method of estimation of partial
indirect confidence (1) is the most discriminative among all tested formulas (Fig. 5).

Some research on the utility of indirect rules in recommendation systems has been
conducted in [7]. This revealed that indirect rules significantly extend short ranking
lists. Additionally, the presented above results proofed that indirect rules are capable
of strengthening or weakening classic direct rules (Fig. 7). For that reason, indirect
rules can be helpful in selection of the best (most amplified) direct associations.

P. Kazienko and M. Matrejek 228

Direct rules applied to web logs reflect typical navigation patterns and usually only
confirm “hard hyperlinks” existing on web pages. In opposite, indirect rules “go
outside” of these typical user paths and provide some non-trivial knowledge. Such
knowledge can be utilized in any case when patterns delivered by direct rules are too
obvious for the end user.

The potential usefulness of combination of direct and indirect rules, e.g. in the
form of complex rules (3), can be further studied using the recommendation system
incorporated into an existing web site and running with real web users who could
outright estimate the relevance of suggestions.

References

1. Adomavicius G., Tuzhilin A., Using Data Mining Methods to Build Customer Profiles.
IEEE Computer, Vol. 34, No. 2, 2001, 74-82.

2. Agrawal R., Imieli ski T., Swami A., Mining association rules between sets of items in
large databases. ACM SIGMOD Int. Conference on Management of Data, ACM Press,
1993, 207-216.

3. Cheung D.W.L., Han J., Ng V., Wong C.Y., Maintenance of Discovered Association
Rules in Large Databases: An Incremental Updating Technique. Twelfth Int. Conference
on Data Engineering, IEEE Computer Society, 1996, 106–114.

4. Han J., Pei J., Yin Y., Mining Frequent Patterns without Candidate Generation. ACM
SIGMOD Int. Conference on Management of Data, ACM, 2000, 1-12.

5. Kazienko P., IDARM - Mining of Indirect Association Rules. 2005, to appear.
6. Kazienko P., Multi-agent Web Recommendation Method Based on Indirect Association

Rules. KES’2004, 8th Int. Conference on Knowledge-Based Intelligent Information &
Engineering Systems, Wellington, New Zealand, September 20-25, 2004, Part II, LNAI
3214, Springer Verlag, 1157-1164.

7. Kazienko P., Product Recommendation in E-Commerce Using Direct and Indirect
Confidence for Historical User Sessions. DS’04. 7th Int. Conf. on Discovery Science.
Padova, Italy, October 2-5, 2004, Springer Verlag, LNAI 3245, pp. 255-269.

8. Kazienko P., Kiewra M., Link Recommendation Method Based on Web Content and
Usage Mining. Proc. of the International IIS: IIPWM´03 Conference, Zakopane, Advances
in Soft Computing, Springer Verlag, 2003, 529-534.

9. Kazienko P., Kiewra M., Personalized Recommendation of Web Pages. Chapter 10 in:
Nguyen T. (ed.) Intelligent Technologies for Inconsistent Knowledge Processing.
Advanced Knowledge International, Adelaide, South Australia, 2004, 163-183.

10. Mobasher B., Cooley R., Srivastava J., Automatic Personalization Based on Web Usage
Mining. Communications of the ACM, Volume 43, Issue 8, August, 2000, 142-151.

11. Morzy T., Zakrzewicz M., Data mining. Chapter 11 in Bła ewicz J., Kubiak W., Morzy T.,
Rubinkiewicz M (eds): Handbook on Data Management in Information Systems. Springer
Verlag, Berlin Heidelberg New York, 2003, 487-565.

12. Tan P.-N., Kumar V., Mining Indirect Associations in Web Data. WEBKDD 2001. LNCS
2356 Springer Verlag, 2002, 145-166.

13. Tan P.-N., Kumar V., Srivastava J., Indirect Association: Mining Higher Order
Dependencies in Data. PKDD 2000, LNCS 1910, Springer Verlag (2000) 632-637.

14. Yang H., Parthasarathy S., On the Use of Constrained Associations for Web Log Mining.
WEBKDD 2002, LNCS 2703, Springer Verlag, 2003, 100 – 118.

15. Yen S.J., Chen A.L.P., An Efficient Approach to Discovering Knowledge from Large
Databases. 4th Int.Conf. on Parallel and Distributed Information Systems, IEEE Computer
Society, 1996, 8–18.

16. Zaki M.J., Parathasarathy S., Li W., A Localized Algorithm for Parallel Association Mining.
SPAA’97, 9th ACM Symposium on Parallel Algorithms and Architectures, 1997, 321-330.

Anonymous Communication with On-line and Off-line
Onion Encoding�

Marek Klonowski, Mirosław Kutyłowski, and Filip Zagórski

Institute of Mathematics, Wrocław University of Technology
Miroslaw.Kutylowski@pwr.wroc.pl,

{Marek.Klonowski, Filip.Zagorski}@im.pwr.wroc.pl

Abstract. Anonymous communication with onions requires that a user appli-
cation determines the whole routing path of an onion. This scenario has certain
disadvantages, it might be dangerous in some situations, and it does not fit well
to the current layered architecture of dynamic communication networks.

We show that applying encoding based on universal re-encryption can solve
many of these problems by providing much flexibility – the onions can be created
on-the-fly or in advance by different parties.

Keywords: anonymous communication, onion, universal re–encryption.

1 Introduction

Anonymous Communication. Providing anonymity of communication in public net-
works is one of the most serious problems in computer security. Many interesting ideas
have been presented so far, but still we are far away from solving the problem com-
pletely. Perhaps the most prominent proposals are Chaum’s DC-networks and MIX
networks [3, 2]. Later Rackoff and Simon [14] proposed a protocol in which each user
chooses a random route for his message and encrypts the route and the message within
a structure that resembles an onion. Due to a cryptographic encoding, the messages that
meet in the same node are indistinguishable when leaving this node. This effect is called
“mixing” [2] or a “conflict” [1]. So, the idea of anonymity with onions is that many mes-
sages travel around the network, meet each other and are recoded so that an adversary
gradually looses control over origin points of the messages. The idea of onions became
the basic component of Babel [12] and of Onion Routing [7]. (In fact, the name onion
was introduced in [7].) Recently, it has been used in the TOR protocol [4].

It may happen that some ingredients of the network might be controlled or moni-
tored by an adversary that tries to break anonymity. Many adversary models have been
considered - some of the models allow an adversary to perform only passive traffic
analysis based on information obtained from nodes and links under his control [1, 11].
Other models [12, 13] allow active attacks based on adding or delaying messages by an
adversary.

� Partially supported by the EU within the 6th Framework Programme under contract 001907
(DELIS).

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 229–238, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

230 M. Klonowski, M. Kutyłowski, and F. Zagórski

Connection based protocols such as Onion Routing face a fundamental problem that
breaking one connection at a time effects traffic along exactly one path and therefore
once a path disappears it may betray the path used. No fully satisfactory solution ad-
dressing this problem has been found yet. In this paper we are concerned with protocol
aimed for sending short messages for which security proofs with respect to traffic anal-
ysis do exist.

As it was pointed in [1], anonymity level in an onion based protocol is strongly
correlated with the number of messages processed by the network and the probability of
a conflict/mixing of two or more messages in one node. It turns out that if an adversary
may control only a fraction of links, possibilities of traffic analysis are quite limited
[1, 11]. On the other hand, if an adversary controls the whole traffic, then the onions
provide a low level of anonymity in the case light traffic. Simply, the onions do not
meet frequently in this case, so the paths can be easily recovered by the adversary.

The regular onion encoding, as proposed in [14] and used in the later papers, has
another disadvantage: a user has to know the whole network in order to be able to choose
a truly random path. This assumption is unrealistic in dynamic networks. Moreover,
anonymity is in a serious danger if different parties participating in the protocol use
different sets of servers for intermediate nodes on the onion paths. We are aware of
certain attacks possible in this situation.

Papers [5, 10] introduce new encoding techniques to onions based on universal re-
encryption schemes [9]. The idea is that the components processed by the servers can be
re-encrypted without any knowledge of the contents and the recipient. However, even
then a protocol should be checked carefully - the scheme from [5] has been broken very
fast.

New Results. In our paper we explore new possibilities for design of anonymous com-
munication protocols based on onions encoded with universal re-encryption schemes
[10]. First we propose an off-line protocol that allows to prepare a route of a message
in advance – the onion routes (or their parts) are created by third parties as a kind of
general service. Then, if an application process has to send a message, and it does not
know the topology of the network, it can ask for the service mentioned. This solution is
aimed for the layered communication architectures. It is also useful in a LAN if there are
specialized servers responsible for anonymization messages sent to external locations.

In the second proposal (online merge onions), we show how to move responsibility
of determining onion paths to specialized servers that make decisions dynamically (for
instance based on the traffic load). It enables to adjust quickly to network conditions.
Another important feature of this construction is that it decreases overhead of a message
volume due to onion encapsulation.

2 Onions

2.1 Classical Onions

In this section we briefly recall construction of onions. We assume that a network con-
sists of n servers (called nodes); each of them has its own widely accessible public key

Anonymous Communication with On-line and Off-line Onion Encoding 231

and the corresponding secret key. Moreover, we assume that each server can communi-
cate directly with any other server.

A basic onion protocol looks as follows: in order to send a message m to node R,
node S chooses at random intermediate nodes J1, . . . , Jλ, and encodes m as an onion:

EncJ1(EncJ2(. . . (EncJλ
(EncR(m),R),Jλ) . . .),J3),J2)

(EncX stands for encryption with the public key of X). This onion is sent by S to J1.
Node J1 decrypts the message - the plaintext obtained consists of two parts: the second
part is J2, the first one is an onion with one layer peeled off:

EncJ2(. . . (EncJλ
(EncR(M),R),Jλ) . . .),J3) .

Then J1 sends this onion to J2. Nodes J2, . . . , Jλ work similarly, the onion is gradually
“peeled off” until it is finally received by node R.

In fact, additional countermeasures are necessary in order to avoid some simple
attacks on the onion protocol (for details see for instance [1]):

– We have to use a probabilistic encryption scheme. Otherwise an adversary could
establish a permutation between the input and the output of a node by a simple
encryption of the whole output batch.

– The size of the onions should be fixed. A kind of padding can be used.

2.2 Universal Re-encryption

We recall universal re-encryption scheme from [9] based on ElGamal encryption. Let
G be a cyclic group of order p such that the discrete logarithm problem is hard for G.
Let g be a generator of G. Then a private key is a random x < p ; the corresponding
public key is y = gx.

Encryption: In order to encrypt a message m for Alice, Bob generates uniformly at
random values k0 and k1. Then, the following quadruple is a ciphertext of m:

(α0,β0;α1,β1) :=
(
m · yk0 , gk0 ; yk1 , gk1

)
In fact, (α0,β0), and (α1,β1) are ElGamal ciphertexts of, respectively, m and 1.

Decryption: Alice computes m0 = α0
βx
0

and m1 = α1
βx
1

, and accepts a message m = m0 ,
if and only if m1 = 1.

As for the ElGamal scheme, this is a probabilistic cryptosystem – if we encrypt
the same message twice, we get two different ciphertexts. Moreover, given two cipher-
texts, it is impossible to say whether they were encrypted under the same key, provided
that the private key is unknown. This property is called key-privacy (see [9]).

ElGamal cryptosystem has another important feature. We can re-encrypt a ciphertext
(α,β) so that any relation between the old and the new ciphertext (α′,β′) is hidden for
the observer that has no access to the private key. For the scheme presented above even
a public key is not necessary – for this reason, it is called universal re-encryption,
or URE for short. The re-encryption procedure looks as follows: First, random values
k′
0 and k′

1 are chosen. Then a re-encrypted version of a ciphertext (α0,β0,α1,β1) is
obtained as: (

α0 · αk′
0

1 ,β0 · βk′
0

1 ;αk′
1

1 ,β
k′
1

1

)
.

232 M. Klonowski, M. Kutyłowski, and F. Zagórski

Let UREx(m) stand for a ciphertext of m obtained with universal re-encryption scheme,
where x is the private decryption key.

2.3 Onions Based on Universal Re-encryption

In [10] the following method of encoding a message m going from A to B = Jλ+1
through path J1, . . . , Jλ is presented. Let (yi, xi) be the pair of public and private key of
Ji for i ≤ λ+1. An URE-onion consists of ciphertexts UREx1(J1), UREx1+x2(J2), . . . ,
UREx1+...+xλ

(Jλ) and UREx1+...+xλ+1(m). These ciphertexts are obtained with the
public keys, respectively, y1, y1 · y2, . . . , y1 · . . . · yλ+1. After creating, these ciphertexts
are permuted at random.

Processing an URE-onion consists of two phases: a partial decryption and a re-
encryption phase. For instance, J1 performs the following steps: each URE-ciphertext
(α0,β0,α1,β1) is replaced during partial decryption by

(α0/βx1
0 ,β0,α1/βx0

1 ,β1) .

It is easy to see that if (α0,β0,α1,β1) is UREx1+...+xi
(w), then after the partial de-

scription we get UREx2+...+xi
(w). One of the ciphertexts obtained is in fact of the form

(J2,β0, 1,β1) and indicates the next destination. Then all ciphertexts (including this of
J2) are re-encrypted and permuted at random before being sent to J2.

It is easy to see that the encoding described above guarantees that only processing
along the path chosen by A guarantees delivery of the URE-onion. Any malicious pro-
cessing (re-direction, detours, changing the contents) can be detected with high proba-
bility and the malicious server can be identified.

3 Features and Protocols Based on URE-Onions

In this section we present several important features of URE-onions that can be used in
design of anonymity protocols.

3.1 Basic Features

Plaintext Insertion After Encryption. Universal re-encryption inherits the remarkable
property of ElGamal encryption scheme: the plaintext may be determined after essen-
tial part of encryption computation. Indeed, first we prepare a ciphertext of 1. It has
the form

(
1 · yk0 , gk0 ; yk1 , gk1

)
. Then we can convert it to a ciphertext of m simply by

multiplying the first component by m.

Navigators. An onion encoding a special void message −, with a starting point A and
destination B can be used to encode only a “path”. If a node obtains after decoding an
onion a message “−”, it knows that the onion has reached the end of its path. Such an
onion will be called a navigator from A to B and denoted Nav[A, B].

Navigators are particularly handy for URE-onions: a so-called URE-navigator con-
sists of two parts: the first one is a navigator, say Nav[A, B], the second part is an
URE-ciphertext obtained with some public key (not necessarily the key of the destina-
tion node B) encoding some additional information. Immediately after creation of an

Anonymous Communication with On-line and Off-line Onion Encoding 233

URE-navigator the ciphertext encodes 1. Afterwards, when the URE-navigator is used
and re-coded, we can replace 1 with an arbitrary message m, as described above. We
use notation Nav[A, B] UREx(m) for such a URE-navigator, where x is the decryption
key of the ciphertext of m.

Let us remark that for traditional onions we can add external layers to a naviga-
tor Nav[A, B]: afterwards the path of the onion would lead from a chosen C to A,
and then follow the route defined by Nav[A, B]. For standard onion constructions such
a modification is possible even, if we get Nav[A, B] from a third party and we cannot
disassemble it. For URE-onions such a manipulation is impossible.

3.2 Plain Off-line Scheme

In order to send anonymously a message m from S to R we can simply send an URE-
navigator Nav[S,R]URExR

(m). Subsequent servers from the path “peel off” the nav-
igator and re-encrypt message m. Node R can decrypt the ciphertext and retrieve m.

Such a URE-navigator can be called an off-line onion, since an empty navigator can
be created in advance and as soon as a message m to be sent is ready at application level,
an URE-navigator encoding m is created by inserting m into the URE-ciphertext, as
described above, and by re-encrypting all ciphertexts of the URE-navigator immediately
afterwards (in order to hide m and the navigator used from the party that constructed
the navigator).

Replacement Attack. Assume that an active adversary controls (actively) the beginning
and the end of a path encoded in the navigator. At the beginning of the path, he replaces
the URE-ciphertext of the off-line onion by an URE-ciphertext of a random string r
encrypted with his own key. Of course, he can trace such a modified onion while it
moves through the network. Simply, he decrypts all URE-ciphertexts of the onions with
his decryption key – re-encryption does not prevent retrieving r. Once the message
arrives at the end of the path, the adversary replaces the URE-ciphertext of r back by
the original one and re-encrypts it. The destination node obtains a proper ciphertext and
has no idea that the connection was under attack.

One can prevent this attack: instead of URExR
(m) the sender transmits cipher-

text UREx1+...+xλ
(m), where x1, . . . , xλ are private keys of the subsequent nodes

on the path from S to R. Now, each intermediate node has to decrypt partially (and
re-encrypt) the URE-ciphertext obtained. It is easy to see that after this modification
the attack described above fails - the URE-ciphertext must be processed by all interme-
diate servers indicated in the navigator. So the destination node would retrieve a differ-
ent message. Also due to the partial decryption, the adversary would not detect its own
message inserted at the beginning of the path. Indeed, it is difficult to detect any con-
nection between the ciphertexts of the form (m · (yz)k, gk) and (m · zk′

, gk′
) knowing

the public keys y, z only.

Advantages of the Scheme. The main point is that the scheme separates encoding the mes-
sage from encoding the route. It may be useful in many ways:

234 M. Klonowski, M. Kutyłowski, and F. Zagórski

1. The onions can be prepared in advance.
2. If a sender does not know topology of the network or its knowledge is not up to

date, it is better to use navigators offered by trusted servers. In this way we can del-
egate the chores of creating the routes to a special well protected and administered
server. This is quite advantageous since if some users choose intermediate servers
in a different way than the rest of the world, then traffic analysis might become
easy. Note that all results on traffic analysis [14, 1, 11] require that the intermediate
nodes are chosen by all users with the same probability distribution.

3. An empty off-line onion (i. e. one encoding the message 1) can be delivered as a reg-
ular message to any node. Then this node can use it as anonymous return-address and
send it back without knowing the address of the request source. Of course, such an
anonymous reply scheme is possible also with the traditional onions [1], however the
present solution does not require the intermediate servers to memorize any values.

The main disadvantage of the scheme is that the server preparing a navigator has
to know all pairs (source, destination) used (of course, the user can fetch much more
navigators that it uses and in this way hide a particular connection). Hence the solution
might be suited for a company, but it is not aimed for a general use.

3.3 Merging Navigators

Using plain off-line onions becomes dangerous, when navigators were created by a
server cooperating with an adversary. Even if a direct identification of a navigator in
the traffic transmitted is impossible, traffic analysis might provide valuable information.
This would be facilitated by the fact that the adversary might know all random paths
encoded in the navigators generated by a certain server.

In order to avoid such a situation we propose merge onions (MO for short); our
protocol shows how to combine navigators from different sources into an onion with
a longer path. If the navigators come from different and non-cooperating sources, the
resulting onion cannot be traced by an adversary collaborating with only some of these
sources.

1N
N4

N3
N2

S

R

2

3

3

4
2

1

1

4
s

r

s

rs

r

s

r

Fig. 1. Composing a merge-onion path from navigators N1, N2, N3, N4

Anonymous Communication with On-line and Off-line Onion Encoding 235

Creating MO. For the sake of simplicity we describe how to compose a MO from two
parts (Fig. 1 presents the case in which 4 navigators are used). A sender S wishing to
transmit a message m to destination R executes the following steps:

– it chooses two navigators at hand, say Nav[J1,Jδ], Nav[L1,Lδ] .
– it composes a merge-onion containing the following components:

Nav[J1,Jδ], UREx(L1), UREx(Nav[L1,Lδ]), UREx+y(R), UREx+y+xR
(m)

where, respectively, x and y are the sums of the description keys related to the nav-
igators Nav[J1,Jδ], Nav[L1,Lδ], and xR is the decryption key of R.

The way of processing such an onion is clear: first it is sent to J1. Then it is pro-
cessed according to the navigator Nav[J1,Jδ]; at each step all remaining components
are partially decrypted and re-encrypted. This lasts until we reach the end of the first
navigator. Then the second component reveals L1 and the last three components are
sent to L1. Then the message follows the route encoded by the navigator Nav[L1,Lδ]
until it reaches Lδ . Then R is retrieved and the last component (which is a ciphertext of
m with the decryption key xR) is sent to R.

For the protocol described, the adversary can see what is the number of remaining
navigators to be used until the end of the path. In order to hide this information we may
introduce a simple modification of the protocol. The server, which retrieves the next
navigator to be used, does not remove its ciphertext, but re-encrypts it and moves behind
the last ciphertext of a navigator.

Advantages of Merge Onions. The size of MO grows moderately with the number of
navigators used. Each navigator (except one) is represented by a single URE-ciphertext
of the navigator and a URE-ciphertext of the starting node of the next navigator.

3.4 Online Merge Onions

Online Merge Onion scheme (OMO), in contrast to Merge Onion scheme, demands
from the sender knowledge of a few stable servers in the network that remain working
all the time. Navigators are chosen online by the servers selected by the sender. We
can think about OMO as a scheme in which sender “asks” some servers to provide
anonymity of his message by sending it along routes with many conflicts.

Creating OMO. A sender S wishing to transmit a message m to R executes the follow-
ing steps:

– it chooses k servers A1,A2, ...,Ak at random (from a common public list), and
creates a navigator N = Nav[A1, ...,Ak] encoding the path A1, ...,Ak;

– it inserts a message “to R” into N ,
– it creates URExR

(m), where xR is the decryption key of R,
– it chooses an URE-navigator U from a set of available navigators and inserts a

message: “to A1” into it,
– finally, it sends a message:

U(to A1), URExA1
(Nav[A1, ...,Ak](to R)), URExR

(m)

to the starting node of the navigator U .

236 M. Klonowski, M. Kutyłowski, and F. Zagórski

Processing OMO. There are two cases. If a server D receiving the onion is not on
the list (A1, ...,Ak), then it processes it according to the navigator standing in front of
the message and re-encrypts the remaining parts. If D = Ai, then

– it decrypts URExAi
(Nav[Ai,Ai+1, ...,Ak]), so it gets Nav[Ai+1, ...,Ak]) and the mes-

sage: “to Ai+1”,
– it encrypts the navigator obtained with the public key of Ai+1, that is, it gets

URExAi+1
(Nav[Ai+1, ...,Ak]),

– it chooses an URE-navigators M and inserts the message “to Ai+1” into it.
– it re-encrypts the last part of the message, which is URExR

(m),
– it sends concatenation of these parts:

M(“to Ai+1”), UREAi+1(Nav[Ai+1, ...,Ak]), URExB
(m)

to the starting node of the navigator M .

Protocol Features.

Adapting Onion Length to Network Load. Servers can dynamically adopt their behavior
to message traffic independently of the senders. It is often believed that using dummy
messages to increase the traffic to the maximal amount and keeping lengths of the onion
paths fixed is a proper answer to network dynamics. However, proving resilience to
traffic analysis when a fraction of servers and lines is malicious depends on how often
the onions are processed through honest servers and links[11]. So dummies do not help
that much, as one may hope at the first look.

The protocol OMO gives the freedom to adopt the lengths of the paths on-the-fly.
So, as shown on picture below, server A can assign to packet m arriving at time t not
only a different path in a navigator, but also a different path length. For instance, on the
figure below a packet corresponding to the same message m, but arriving at time, say
t′, will reach server B in 5 steps instead of 11. Moreover, due to re-encryption, those
two packets look completely different.

B

A

m(t’)

m(t)

Fig. 2. Adjusting the path length by OMO

Traffic Reduction. If a message m to be transmitted is small, then the volume of routing
information contained in an onion containing m might be high compared to the volume
of m. This disadvantage can be relaxed somewhat through online merge onions: while

Anonymous Communication with On-line and Off-line Onion Encoding 237

the total length of the path along which a message is processed is long (preventing a
traffic analysis), all the time the message transmitted contains only two (much shorter)
navigators.

Enforcing Conflicts and Constructing Navigators. The way of choosing the mix servers
is the following. The procedure requires a global list A of mix servers, known to every
protocol participant. When a server Ai has to choose a navigator leading to a server
Ai+1, it uses an approximation of the number of onions in the network to determine
the length of the navigator, say t. The number t can be found through observation of
the traffic passing through in the preceding moments. Assume that a mix can process at
most z onions at once. Then Ai takes s such that z = Θ(t/s + log s/ log log s). The
mix servers for the navigator constructed by Ai are chosen uniformly at random from
the prefix of listA of length s. Standard “bin and balls” arguments may be applied here
to show that a large number of conflicts at mix servers would be generated in this way.
We skip a detailed analysis here.

Conclusions

We have shown that universal re-encryption provides many new interesting features:

– possibility to prepare onions in advance,
– adaptiveness to network traffic,
– size reduction of the auxiliary parts of onion messages,
– possibility to process the onions through arbitrary chosen mixes,
– implementing onions in a layered architecture of a distributed, dynamic system.

Let us compare the parameters used by the schemes. Necessary path length λ for
each of the schemes depends on assumptions about adversary model. If an adversary
can corrupt only a constant fraction of navigator sources, essentially the same analysis
applies as in the case of [11]. So we consider the same (global) path length λ for 3
schemes considered below.

Classical Onions Merge Onions Online Merge Onions
message size O(λ+|m|) O(λ+|m|) O(k+λ/k+|m|)
end-user encoding cost O(enc(λ|m|)) O(k·enc(λ/k)+enc(|m|)) O(enc(λ/k+|m|))
preprocessing possible no yes partially

processing cost at a server O(enc(λ+|m|)) O(enc(λ+|m|)) O(enc(λ/k+|m|))
messages tracing* easy easy hard

repetitive attack** easy easy harder

traffic change – moderate increase decrease

required knowledge of network

topology

full none limited

traffic adaptiveness no no yes

* at low traffic, by a passive adversary who controls all links

** at any traffic, by an active adversary

238 M. Klonowski, M. Kutyłowski, and F. Zagórski

References

1. Berman R., Fiat A., Ta-Shma A.: Provable Unlinkability Against Traffic Analysis, Financial
Cryptography 2004, LNCS , Springer-Verlag

2. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,
CACM 24(2) (1981), 84-88

3. Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Un-
traceability, Journal of Cryptology 1.1 (1988), 65-75

4. Dingledine R., Mathewson N., Syverson P., Tor: the Second Generation Onion Router,
USENIX Security, 2004

5. Fairbrother, P.: An Improved Construction for Universal Re-encryption, Privacy Enhancing
Technologies’2004, LNCS , Springer-Verlag.

6. Frankling, M., Haber, S.: Joint Encryption and Message-Efficient Secure Computation, Jour-
nal of Cryptology 9.4 (1996), 217-232.

7. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding Routing Information. Information
Hiding ’1996, LNCS 1174, Springer-Verlag, 137-150.

8. Golle, P.: Reputable Mix Networks, Privacy Enhancing Technologies ’2004, LNCS ,
Springer-Verlag.

9. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal Re-encryption for Mixnets, RSA-
CT’2004, 163-178.

10. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Anonymous Communication Immune
against Repetitive Attack, Workshop on Information Security Applications (WISA)’2004,
LNCS , Springer-Verlag, to appear.

11. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Provable Unlinkability Against Traf-
fic Analysis already after O(log(n)) Steps!, Information Security Conference (ISC)’2004,
LNCS 3225, Springer-Verlag, 354-366.

12. Gülcü, C., Tsudik, G.: Mixing E-mail with BABEL, ISOC Symposium on Network and
Distributed System Security, IEEE 1996, 2-16.

13. Kesdogan D., Egner J., Büschkes R.: Stop-and-Go-MIXes Providing Probabilistic
Anonymity in an Open System, Information Hiding ’98, LNCS 1525, Springer-Verlag, 83-
98.

14. Rackoff, C., Simon, D.R.: Cryptographic Defense Against Traffic Analysis, ACM STOC25
(1993), 672-681.

Characteristic Patterns for LTL�

Antonı́n Kučera and Jan Strejček

Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic

{tony, strejcek}@fi.muni.cz

Abstract. We give a new characterization of those languages that are definable
in fragments of LTL where the nesting depths of X and U modalities are bounded
by given constants. This brings further results about various LTL fragments. We
also propose a generic method for decomposing LTL formulae into an equivalent
disjunction of “semantically refined” LTL formulae, and indicate how this result
can be used to improve the functionality of existing LTL model-checkers.

1 Introduction

Linear temporal logic (LTL) [1] is a popular formalism for specifying properties of
(concurrent) programs. The syntax of LTL is given by the following abstract syntax
equation:

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 Uϕ2

Here a ranges over a countable set Λ = {a, b, c, . . .} of letters. We also use Fϕ to
abbreviate ttU ϕ, and Gϕ to abbreviate ¬F¬ϕ. The set of all letters which appear in a
given formula ϕ is denoted Λ(ϕ).

The semantics of LTL is defined in terms of languages over infinite words. An alpha-
bet is a finite set Σ ⊆ Λ. An ω-word over Σ is an infinite sequence α = α(0)α(1)α(2) . . .
of letters from Σ. The set of all finite words over Σ is denoted by Σ∗, and the set of all
ω-words by Σω . The length of a given u ∈ Σ∗ is denoted |u|. In the rest of this paper
we use a, b, c, . . . to range over Σ, u, v, . . . to range over Σ∗, and α,β, . . . to range over
Σω . For every i ∈ N0 we denote by αi the ith suffix of α, i.e., the word α(i)α(i+1)

Let Σ be an alphabet. The validity of a formula ϕ for α ∈ Σω is defined as follows:

α |= tt
α |= a iff a = α(0)
α |= ¬ϕ iff α �|= ϕ
α |= ϕ1 ∧ ϕ2 iff α |= ϕ1 ∧ α |= ϕ2
α |= Xϕ iff α1 |= ϕ
α |= ϕ1 Uϕ2 iff ∃i ∈ N0 : αi |= ϕ2 ∧ ∀ 0 ≤ j < i : αj |= ϕ1

For each alphabet Σ, a formula ϕ defines the ω-language LΣ
ϕ = {α ∈ Σω | α |= ϕ}.

� This work has been supported by GAČR, grant No. 201/03/1161.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 239–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

240 A. Kučera and J. Strejček

For every LTL formula ϕ and every modality M ∈ {X,U} we define the nesting
depth of M in ϕ, denoted M -depth(ϕ), inductively as follows.

M -depth(tt) = M -depth(a) = 0
M -depth(¬ϕ) = M -depth(ϕ)

M -depth(ϕ1 ∧ ϕ2) = max{M -depth(ϕ1),M -depth(ϕ2)}

M -depth(Xϕ) =
{

M -depth(ϕ) + 1 if M = X,
M -depth(ϕ) otherwise.

M -depth(ϕ1 U ϕ2) =
{

max{M -depth(ϕ1),M -depth(ϕ2)}+ 1 if M = U,
max{M -depth(ϕ1),M -depth(ϕ2)} otherwise.

For all m, n ∈ N0∪{∞}, the symbol LTL(Um,Xn) denotes the set of all LTL formulae
ϕ such that U-depth(ϕ) ≤ m and X-depth(ϕ) ≤ n. To simplify our notation, we omit
the “∞” superscript. Hence, e.g., LTL(U3,X) is a shorthand for LTL(U3,X∞).

A lot of research effort has been invested into characterizing the expressive power
of LTL and its fragments. A concise survey covering basic results about LTL expres-
siveness can be found in [2]. A more recent survey [3] contains also results concerning
some of the LTL fragments. In this paper, we give a new characterization of ω-languages
that are definable in LTL(Um,Xn) for given m, n ∈ N0.1 Roughly speaking, for each
alphabet Σ and all m, n ∈ N0 we design a finite set of (m, n)-patterns2, where each
(m, n)-pattern is a finite object representing an ω-language over Σ so that the following
conditions are satisfied:

– Each α ∈ Σω is represented by exactly one (m, n)-pattern (consequently, the sets
of ω-words represented by different patterns are disjoint).

– ω-words which are represented by the same (m, n)-pattern cannot be distinguished
by any formula of LTL(Um,Xn).

– For each (m, n)-pattern p we can effectively construct a formula ψ ∈ LTL(Um,Xn)
so that for each α ∈ Σω we have that α |= ψ if and only if α is represented by the
pattern p.

Thus, the semantics of each formula ϕ ∈ LTL(Um,Xn) is fully characterized by a
finite subset of (m, n)-patterns, and vice versa. Intuitively, (m, n)-patterns represent ex-
actly the information about ω-words which determines the (in)validity of LTL(Um,Xn)
formulae. The patterns are defined inductively on m, and the inductive step brings some
insight into what is actually gained (i.e., what new properties can be expressed) by in-
creasing the nesting depth of U by one.

Characteristic patterns can be used as a tool for proving further results about the
logic LTL and its fragments. In particular, they can be used to construct a short proof
of a (somewhat simplified) form of stutter invariance of LTL(Um,Xn) languages in-
troduced in [4]. This, in turn, allows to construct simpler proofs for some of the re-
sults presented in [4] (like, e.g., the strictness of the LTL(Um,X), LTL(U,Xn), and

1 The expressiveness of these fragments has already been studied in [4]. In particular, it has been
proven that the classes of languages definable by two syntactically incomparable fragments of
this form are also incomparable.

2 Let us note that (m, n)-patterns have nothing to do with the forbidden patterns of [3].

Characteristic Patterns for LTL 241

LTL(Um,Xn) hierarchies). An interesting question (which is left open) is whether
one could use characteristic patterns to demonstrate the decidability of the problem
if a given ω-regular language L is definable in LTL(Um,X) for a given m.

Another application area for characteristic patterns is LTL model-checking. We be-
lieve that this is actually one of the most interesting parts of our work, and therefore we
explain the idea in greater detail.

An instance of the LTL model-checking problem is a system and an LTL formula
(called “specification formula”) which defines desired properties of the system. The
question is whether all runs of the system satisfy the formula. This problem can dually
be reformulated as follows: for a given system and a given formula ϕ (representing
the negation of the desired property), decide whether the system has at least one run
satisfying ϕ. Characteristic patterns can be used to decompose a given LTL formula ϕ
into an equivalent disjunction ϕ ≡ ψ1 ∨ . . . ∨ ψn of mutually exclusive formulae (i.e.,
we have ψi ⇒

∧
j �=i ¬ψj for each i). Roughly speaking, each ψi corresponds to one of

the patterns which define the semantics of ϕ. Hence, the ψi formulae are not necessarily
smaller or simpler than ϕ from the syntactical point of view. The simplification is on
semantical level, because each ψi “cuts off” a dedicated subset of runs that satisfy ϕ.
Another advantage of this method is its scalability—the patterns can be constructed also
for those n and m that are larger than the nesting depths of X and U in ϕ. Thus, the
patterns can be repeatedly “refined”, which corresponds to decomposing the constructed
ψi formulae. Another way of refining the patterns is enlarging the alphabet Σ.

The decomposition technique enables the following model-checking strategy: First
try to model-check ϕ. If this does not work (because of, e.g., memory overflow), then
decompose ϕ into ψ1 ∨ . . .∨ψn and try to model-check the ψ1, . . . , ψn formulae. This
can be done sequentially or even in parallel. If at least one subtask produces a positive
answer, we are done (there is a “bad” run). Similarly, if all subtasks produce a negative
answer, we are also done (there is no “bad” run). Otherwise, we go on and decompose
those ψi for which our model-checker did not manage to answer.

Obviously, the introduced strategy can only lead to better results than checking just
ϕ, and it is completely independent of the underlying model-checker. Moreover, some
new and relevant information is obtained even in those cases when this strategy does not
lead to a definite answer—we know that if there is a bad run, it must satisfy some of the
subformulae we did not manage to model-check. The level of practical usability of the
above discussed approach can only be measured by outcomes of practical experiments
which are beyond the scope of this (mainly theoretical) paper.3 Here we concentrate on
providing basic results and identifying promising directions for applied research.

Let us note that similar decomposition techniques have been proposed in [5] and [6].
In [5], a specification formula of the form Gϕ is decomposed into a set of formulae
{G(x=vi ⇒ ϕ) | vi is in the range of the variable x}. This decomposition technique
has been implemented in the SMV system together with methods aimed at reducing
the range of x. This approach has then been used for verification of specific types of
infinite-state systems (see [5] for more details). In [6], a given specification formula
ϕ is model-checked as follows: First, a finite set of formulae ψ1, . . . , ψn of the form

3 A practical implementation of the method is under preparation.

242 A. Kučera and J. Strejček

ψi = G(x�=v0 ⇒ x=vi) is constructed such that the verified system satisfies ψ1 ∨
. . . ∨ ψn. The formulae ψ1, . . . , ψn are either given directly by the user, or constructed
automatically using methods of static analysis. The verification problem for ϕ is then
decomposed into the problems of verifying the formulae ψi ⇒ ϕ. Using this approach,
the peak memory in model checking has been reduced by 13–25% in the three case
studies included in the paper.

It is worth mentioning that characteristic patterns could potentially be used also in
a different way: we could first extract all patterns that can be exhibited by the system,
and then check whether there is one for which ϕ holds. Unfortunately, the set of all
patterns exhibited by a given system seems to be computable only in restricted cases,
e.g., when the system has just a single path (see [7] for more information about model
checking of these systems and [8] for a pattern-based algorithm).

The paper is organized as follows. Section 2 provides a formal definition of (m, n)-
patterns together with basic theorems. Section 3 is devoted to detailed discussion of
the indicated decomposition technique. Conclusions and directions for future research
are given in Section 4. Other applications of characteristic patterns in the area of LTL
model checking as well as all proofs (which were omitted due to space constraints) can
be found in [8].

2 Characteristic Patterns

To get some intuition about characteristic patterns, let us first consider the set of patterns
constructed for the alphabet Σ = {a, b, c}, m = 1, and n = 0 (as we shall see, the m
and n correspond to the nesting depths of U and X, respectively). Let α ∈ Σω be an
ω-word. A letter α(i) is repeated if there is j < i such that α(j) = α(i). The (1, 0)-
pattern of α, denoted pat(1, 0,α), is the finite word obtained from α by deleting all
repeated letters (for reasons of consistent notation, this word is written in parenthesis).
For example, if αaabbbaabababcabccacab . . ., then pat(1, 0,α) = (abc). So, the set of
all (1, 0)-patterns over the alphabet {a, b, c}, denoted Pats(1, 0, {a, b, c}), has exactly
15 elements which are the following:

(abc), (acb), (bac), (bca), (cab), (cba), (ab), (ba), (ac), (ca), (bc), (cb), (a), (b), (c)

Thus, the set {a, b, c}ω is divided into 15 disjoint subsets, where each set consists of
all ω-words that have a given pattern. It remains to explain why these patterns are in-
teresting. The point is that LTL(U1,X0) formulae can actually express just the order
of non-repeated letters. For example, the formula aU b says that either the first non-
repeated letter is b, or the first non-repeated letter is a and the second one is b. So, this
formula holds for a given α ∈ {a, b, c}ω iff pat(1, 0,α) is equal to (b), (ba), (bc), (bac),
(bca), (ab), or (abc). We claim (and later also prove) that ω-words of {a, b, c}ω which
have the same (1, 0)-pattern cannot be distinguished by any LTL(U1,X0) formula. So,
each ϕ ∈ LTL(U1,X0), where Λ(ϕ) ⊆ {a, b, c}, is fully characterized by a subset of
Pats(1, 0, {a, b, c}). Moreover, for each p ∈ Pats(1, 0, {a, b, c}) we can construct an
LTL(U1,X0) formula ϕp such that for every α ∈ {a, b, c}ω we have that α |= ϕp iff
pat(1, 0,α) = p. For example, ϕ(abc) = a ∧ (aU b) ∧ ((a ∨ b)U c).

Characteristic Patterns for LTL 243

To indicate how this can be generalized to larger m and n, we show how to extract
a (2, 0)-pattern from a given α ∈ {a, b, c}ω . We start by considering an infinite word
over the alphabet Pats(1, 0, {a, b, c}) constructed as follows:

pat(1, 0,α0) pat(1, 0,α1) pat(1, 0,α2) pat(1, 0,α3) . . .

For example, for α = aabacaω we obtain the sequence (abc)(abc)(bac)(ac)(ca)(a)ω .
The pattern pat(2, 0,α) is obtained from the above sequence by deleting repeated letters
(realize that now we consider the alphabet Pats(1, 0, {a, b, c})). Hence, pat(2, 0,α) =
((abc)(bac)(ac)(ca)(a)). Similarly as above, it holds that those ω-words of {a, b, c}ω
which have the same (2, 0)-pattern cannot be distinguished by any LTL(U2,X0) for-
mula. Moreover, for each p ∈ Pats(2, 0, {a, b, c}) we can construct an LTL(U2,X0)
formula ϕp such that for every α ∈ {a, b, c}ω we have that α |= ϕp iff pat(2, 0,α) = p.

Formally, we consider every finite sequence of (1, 0)-patterns, where no (1, 0)-
pattern is repeated, as a (2, 0)-pattern. This makes the inductive definition simpler, but
in this way we also introduce patterns that are not “satisfiable”. For example, there is
obviously no α ∈ {a, b, c}ω such that pat(2, 0,α) = ((a)(ab)).

The last problem we have yet not addressed is how to deal with the X operator. First
note that the X operator can be pushed inside using the following rules (see, e.g., [2]):

Xtt ≡ tt X¬ϕ ≡ ¬Xϕ X(ϕ1 ∧ ϕ2) ≡ Xϕ1 ∧ Xϕ2 X(ϕ1 U ϕ2) ≡ Xϕ1 U Xϕ2

Note that this transformation does not change the nesting depth of X. Hence, we can
safely assume that the X operator occurs in LTL formulae only within subformulae
of the form XX . . . Xa. This is the reason why we can handle the X operator in the
following way: the set Pats(m,n,Σ) is defined in the same way as Pats(m, 0, Σ).
The only difference is that we start with the alphabet Σn+1 instead of Σ.

Definition 1. Let Σ be an alphabet. For all m, n ∈ N0 we define the set Pats(m,n,Σ)
inductively as follows:

– Pats(0, n,Σ) = {w ∈ Σ∗ | |w|n+1}
– Pats(m+1, n,Σ) = {(p1 . . . pk) | k ∈ N, p1, . . . , pk ∈ Pats(m,n,Σ),

pi �= pj for i �= j}

The size of Pats(m,n,Σ) and the size of its elements are estimated in our next
lemma (the proof follows directly from definitions).

Lemma 1. For every i ∈ N0, let us define the function faci : N0 → N0 inductively
as follows: fac0(x) = x, faci+1(x) = (faci(x) + 1)!. The number of elements of

Pats(m, n, Σ) is bounded by facm(|Σ|n+1), and the size of each p ∈ Pats(m,n,Σ)
is bounded by (n + 1) ·Πm−1

i=0 faci(|Σ|
n+1).

The bounds given in Lemma 1 are non-elementary in m. This indicates that all of
our algorithms are computationally unfeasible from the asymptotic complexity point of
view. However, LTL formulae that are used in practice typically have a small nesting
depth of U (usually not larger than 3 or 4), and do not contain any X operators. In this
light, the bounds of Lemma 1 can actually be interpreted as “good news”, because even

244 A. Kučera and J. Strejček

a relatively small formula ϕ can be decomposed into a disjunction of many formulae
which refine the meaning of ϕ.

To all m, n ∈ N0 and α ∈ Σω we associate a unique pattern of Pats(m,n,Σ). This
definition is again inductive.

Definition 2. Let α ∈ Σω . For all m, n ∈ N0 we define the characteristic (m, n)-
pattern of α, denoted pat(m,n,α), and (m, n)-pattern word of α, denoted
patword(m, n,α), inductively as follows:

– pat(0, n,α) = α(0) . . . α(n)
– patword(m, n,α) ∈ Pats(m,n,Σ)ω is defined by patword(m,n,α)

(i) = pat(m, n,αi)
– pat(m+1, n,α) is the finite word (written in parenthesis) obtained from

patword(m, n,α) by deleting all repeated letters

Words α,β ∈ Σω are (m, n)-equivalent, written α ∼m,n β, iff pat(m,n,α) =
pat(m, n,β).

Example 1. Let us consider a word α = abbbacbac(ba)ω . Then

pat(0, 0,α) = a
patword(0, 0,α) = abbbacbac(ba)ω = α

pat(1, 0,α) = (abc)
patword(1, 0,α) = (abc)(bac)(bac)(bac)(acb)(cba)(bac)(acb)(cba)((ba)(ab))ω

pat(2, 0,α) = ((abc)(bac)(acb)(cba)(ba)(ab))
pat(0, 1,α) = ab

patword(0, 1,α) = ab bb bb ba ac cb ba ac cb(ba ab)ω

pat(1, 1,α) = (ab bb ba ac cb) ��

Theorem 1. Let Σ be an alphabet. For all m, n ∈ N0 and every p ∈ Pats(m,n,Σ)
there effectively exists a formula ϕp ∈ LTL(Um,Xn) such that for every α ∈ Σω we
have that α |= ϕp iff pat(m,n,α) = p.

Example 2. Let α = abbabaaabb(ac)ω . Then the formula ϕp, where p = pat(2, 0,α) =
((abc)(bac)(ac)(ca)) is constructed (according to the proof of the previous theorem) as
follows:

ϕ(abc) = G(a ∨ b ∨ c) ∧ a ∧ (aU b) ∧ ((a ∨ b)U c)
ϕ(bac) = G(b ∨ a ∨ c) ∧ b ∧ (b U a) ∧ ((b ∨ a)U c)
ϕ(ac) = G(a ∨ c) ∧ a ∧ (aU c)
ϕ(ca) = G(c ∨ a) ∧ c ∧ (cU a)

ϕp = G(ϕ(abc) ∨ ϕ(bac) ∨ ϕ(ac) ∨ ϕ(ca)) ∧ ϕ(abc) ∧ (ϕ(abc) Uϕ(bac)) ∧
∧ ((ϕ(abc) ∨ ϕ(bac))U ϕ(ac)) ∧ ((ϕ(abc) ∨ ϕ(bac) ∨ ϕ(ac))U ϕ(ca)) ��

Let us note that the size of ϕp for a given p ∈ Pats(m,n,Σ) is exponential in the size
of p. However, if ϕp is represented by a circuit (DAG), then the size of the circuit is
only linear in the size of p.

Characteristic Patterns for LTL 245

Theorem 2. Let Σ be an alphabet and let m, n ∈ N0. For all α,β ∈ Σω we have that
α and β cannot be distinguished by any LTL(Um,Xn) formula if and only if α ∼m,n β.

In other words, Theorem 2 says that the information about α which is relevant
with respect to (in)validity of all LTL(Um,Xn) formulae is exactly represented by
pat(m, n,α). Thus, characteristic patterns provide a new characterization of LTL(Um,Xn)
languages which can be used to prove further results about LTL. In particular, a sim-
plified form of (m, n)-stutter invariance of LTL(Um,Xn) languages (see [4]) follows
easily from the presented results on characteristic patterns:

Theorem 3. Let m, n ∈ N0, u, v ∈ Σ∗ and α ∈ Σω . If v is (m, n)-redundant in uvα,
then uvα ∼m,n uα.

Theorem 3 provides the crucial tool which was used in [4] to prove that, e.g., the
LTL(Um,X), LTL(U,Xn), and LTL(Um,Xn) hierarchies are strict, that the class of ω-
languages which are definable both in LTL(Um+1,Xn) and LTL(Um,Xn+1) is strictly
larger than the class of languages definable in LTL(Um,Xn), and so on. The proof of
Theorem 3 is shorter than the one given in [4].

3 Applications in Model Checking

In this section, we expand the remarks about formula decomposition and pattern re-
finement that were sketched in the introduction. We also discuss potential benefits and
drawbacks of these techniques, and provide examples illustrating the presented ideas.

Definition 3. Let p ∈ Pats(m,n,Σ) be a pattern and ϕ ∈ LTL(Um,Xn) be a for-
mula. We say that p satisfies ϕ, written p |= ϕ, iff for every ω-word α ∈ Σω we have
that if pat(m, n,α) = p, then α |= ϕ.

Note that Theorem 2 implies the following: if p �|= ϕ, then for every ω-word α such that
pat(m, n,α) = p we have α �|= ϕ.

Theorem 4. Given an (m, n)-pattern p and an LTL(Um,Xn) formula ϕ, the problem
whether p |= ϕ can be decided in time O(|ϕ| · |p|).

In the rest of this section we consider the variant of LTL where formulae are built
over atomic propositions (At) rather than over letters. The only change in the syntax is
that a ranges over At . The logic is interpreted over ω-words over an alphabet Σ ⊆ 2At ,
where α |= a iff a ∈ α(0). The formula Fϕ is to be understood just as an abbreviation
for ttU ϕ, and Gϕ as an abbreviation for ¬F¬ϕ.

Let ϕ ∈ LTL(Um,Xn) be the negation of a property we want to verify for a given
system. If our model-checker fails to verify whether the system has a run satisfying ϕ or
not (one typical reason is memory overflow), we can proceed by decomposing the for-
mula ϕ in the following way. First, we compute the set P = {p ∈ Pats(m,n, 2At(ϕ)) |
p |= ϕ}. Then, each p ∈ P is translated into an equivalent LTL formula.

Example 3. We illustrate the decomposition technique on a formula ϕ = FG¬a which
is the negation of a typical liveness property GFa. The alphabet is Σ = 2{a} =

246 A. Kučera and J. Strejček

ϕ : �� �������	

A,B

�� B �� �������	
������

B

��
ψ1 : �� �������	
������

B

��
ψ2 : �� �������	

A

�� B �� �������	
������

B

��

Fig. 1. Büchi automata corresponding to formulae ϕ, ψ1, and ψ2 of Example 3

{{a}, ∅}. To simplify our notation, we use A and B to abbreviate {a} and ∅, respec-
tively. The elements of Pats(2, 0, ({A, B}) are listed below (unsatisfiable patterns have
been eliminated). All patterns which satisfy ϕ are listed in the second line.

((A)), ((BA)(A)), ((AB)(BA)), ((BA)(AB)), ((AB)(BA)(A)), ((BA)(AB)(A))
((B)), ((AB)(B)), ((BA)(AB)(B)), ((AB)(BA)(B))

So, the formula ϕ is decomposed into a disjunction ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4 of formulae
corresponding to the patterns listed in the second line, respectively4:

ψ1 = G¬a ψ3 = ¬a ∧ F(a ∧ F¬a) ∧ FG¬a
ψ2 = a ∧ aU G¬a ψ4 = a ∧ F(¬a ∧ Fa) ∧ FG¬a ��

Thus, the original question whether the system has a run satisfying ϕ is decomposed
into k questions of the same type. These can be solved using standard model-checkers.

We illustrate potential benefits of this method in the context of automata-theoretic
approach to model checking [9]. Here the formula ϕ is translated into a corresponding
Büchi automaton Aϕ. Then, the model-checking algorithm computes another Büchi
automaton called product automaton, which accepts exactly those runs of the verified
system which are accepted by Aϕ as well. The model-checking problem is thus reduced
to the problem whether the language accepted by the product automaton is empty or not.
The bottleneck of this approach is the size of the product automaton.

Example 4. Let us suppose that a given model-checking algorithm does not manage to
check the formula ϕ of Example 3. The subtasks given by the ψi formulae constructed
in Example 3 can be more tractable. Some of the reasons are given below.

– The size of the Büchi automaton for ψi can be smaller than the size of Aϕ. In
Example 3, this is illustrated by formula ψ1 (see Fig. 1). The corresponding product
automaton is then smaller as well.

– The size of the product automaton for ψi can be smaller than the one for ϕ, even if
the size of Aψi

is larger than the size of Aϕ. This can be illustrated by the formula
ψ2 of Example 3; the automata for ϕ and ψ2 are almost the same (see Fig. 1), but
the product automaton for ψ2 can be much smaller as indicated in Fig. 2. ��

It is of course possible that some of the ψi formulae in the constructed decomposi-
tion remain intractable. Such a formula ψi can further be decomposed by a technique

4 For notation convenience, we simplified the formulae obtained by running the algorithm of
Theorem 1 into a more readable (but equivalent) form.

Characteristic Patterns for LTL 247

(a)
����������A

����������B

����
��

���
���

�

��������B

��

��������A

��
.

(b)
�������� !
A�������� !
B�������� !

B

�����
�� A

����
��

�

������ !
��

������ !
��

.

(c)
�������� !
A�������� !
B�������� !

B

�����
��

������ !
��

. . .

Fig. 2. An example of a verified system (a) and product automata (b) and (c) corresponding to ϕ

and ψ2 of Example 3, respectively

called refinement (since ψi corresponds to a unique pattern pi ∈ Pats(m,n,Σ), we
also talk about pattern refinement). We propose two basic ways how to refine the pat-
tern pi. The first possibility is to compute the set of (m′, n′)-patterns, where m′ ≥ m
and n′ ≥ n, and identify all patterns satisfying the formula ψi.

Example 5. The formula ψ3 of Example 3 corresponding to the (2, 0)-pattern
((BA)(AB)(B)) can be refined into two LTL(U3,X0) formulae given by the (3, 0)-
patterns (((BA)(AB)(B))((AB)(BA)(B))((AB)(B))((B))) and (((BA)(AB)(B))
((AB)(B))((B))). ��
The other refinement method is based on enlarging the alphabet before computing the
patterns. We simply add a new atomic proposition to the set of atomic propositions that
occur in ϕ. The choice of the new atomic proposition is of course important. By a “suit-
able” choice we mean a choice which leads to a convenient split of system’s runs into
more manageable units. An interesting problem (which is beyond the scope of this pa-
per) is whether suitable new propositions can be identified effectively.

Example 6. Let us consider the formula ψ2 of Example 3 corresponding to the (2, 0)-
pattern ((AB)(B)). The original set of atomic propositions At(ϕ) = {a} generates the
alphabet Σ = {A, B}, where A = {a}, B = ∅. If we enrich the set of atomic propo-
sitions with b, we get a new alphabet Σ′ = {C,D, E, F}, where C = {a, b},D =
{a}, E = {b}, F = ∅. Hence, the original letters A, B correspond to the pairs of letters
C,D and E,F , respectively. Thus, the formula ψ2 is refined into LTL(U2,X0) formu-
lae given by 64 (2, 0)-patterns ((CE)(E)), ((CDE)(DE)(E)), ((CDE)(DCE)(CE)
(E)), ��

Some of the subtasks obtained by refining intractable subtasks can be tractable. Others
can be refined again and again. Observe that even if we solve only some of the subtasks,
we still obtain a new piece of relevant knowledge about the system—we know that if
the system has a “bad” run satisfying ϕ, then the run satisfies one of the formulae
corresponding to the subtasks we did not manage to solve. Hence, we can (at least)
classify and repeatedly refine the set of “suspicious” runs.

We finish this section by listing the benefits and drawbacks of the presented method.

+ The subtasks are formulated as standard model-checking problems. Therefore, the
method can be combined with all existing algorithms and heuristics.

248 A. Kučera and J. Strejček

+ With the help of the method, we can potentially verify some systems which are
beyond the reach of existing model-checkers.

+ Even if it is not possible complete the verification task, we get partial information
about the structure of potential (undiscovered) bad runs. We also know which runs
of the system have been successfully verified.

+ The subtasks can be solved simultaneously in a distributed environment with a very
low communication overhead.

+ When we verify more formulae on the same system, the subtasks occurring in de-
compositions of both formulae are solved just once.

– Calculating the decomposition of a given formula can be expensive. On the other
hand, this is not critical for formulae with small number of atomic propositions and
small nesting depths of U and X.

– Runtime costs of the proposed algorithm are high. It can happen that all subtasks
remain intractable even after several refinement rounds and we get no new infor-
mation at all.

4 Conclusions and Future Work

The aim of this paper was to introduce the idea of characteristic patterns, develop basic
results about these patterns, and indicate how they can be used in LTL model-checking.
An obvious question is how the presented algorithms work in practice. This can only
be answered by performing a set of experiments. We plan to implement the presented
algorithms and report about their functionality in our future work.

Acknowledgement. We thank Michal Kunc for providing crucial hints which eventu-
ally led to the definition of characteristic patterns.

References

1. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium
on the Foundations of Computer Science (FOCS’77), IEEE Computer Society Press (1977)
46–57

2. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science.
Volume B: Formal Models and Semantics. Elsevier (1990) 995–1072

3. Wilke, T.: Classifying discrete temporal properties. In: Annual Symposium on Theoretical
Aspects of Computer Science (STACS’99). Volume 1563 of LNCS., Springer (1999) 32–46

4. Kučera, A., Strejček, J.: The stuttering principle revisited: On the expressiveness of nested X
and U operators in the logic LTL. In: 11th Annual Conference of the European Association
for Computer Science Logic (CSL’02). Volume 2471 of LNCS., Springer (2002) 276–291

5. McMillan, K.L.: Verification of infinite state systems by compositional model checking. In:
Correct Hardware Design and Verification Methods (CHARME’99). Volume 1703 of LNCS.,
Springer (1999) 219–237

6. Zhang, W.: Combining static analysis and case-based search space partitioning for reducing
peak memory in model checking. Journal of Computer Science and Technology 18 (2003)
762–770

Characteristic Patterns for LTL 249

7. Markey, N., Schnoebelen, P.: Model checking a path (preliminary report). In: Proc. 14th Int.
Conf. Concurrency Theory (CONCUR’03). Volume 2761 of LNCS., Springer (2003) 251–265

8. Kučera, A., Strejček, J.: Characteristic patterns for LTL. Technical Report FIMU-RS-2004-
10, Faculty of Informatics, Masaryk University Brno (2004)

9. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verifica-
tion. In: Proceedings of the First Annual IEEE Symposium on Logic in Computer Science
(LICS’86), IEEE Computer Society Press (1986) 332–344

Planar Straight-Line Drawing in an O(n) × O(n)
Grid with Angular Resolution Ω(1/n)

Maciej Kurowski�

Institute of Informatics, Warsaw University,
Banacha 2, 02-097 Warsaw, Poland

kuros@mimuw.edu.pl

Abstract. We study a problem of straight-line drawings for plane graphs.
We show that each plane graph can be drawn in an O(n) × O(n) grid
with angular resolution Ω(1/n).

1 Introduction

The most intensively studied area in graph drawing is devoted to algorithms for
computing aesthetic drawings of graphs. For an extensive survey on the subject
see [1].

When dealing with planar graphs we typically require the edges to be mapped
into internally non-intersecting curves in the plane. Additionally, edges’ drawings
are required to have a simple structure.

The most important measures of quality of the drawing are its area (assuming
all the vertices to have integer coordinates) and angular resolution (the minimum
angle between drawings of incident edges). The angular resolution of the drawing
computed by the algorithm can be measured in two ways: as a function of the
maximum degree Δ of the input graph or the number n of its vertices.

The asymptotically optimal angular resolution Θ(1/Δ) and the quadratic size
of the drawing can be achieved simultaneously if one uses polylines to draw the
edges. Many papers study the algorithms computing such drawings: [11] (three
bends per edge, size (2n−5)×(3

2n− 7
2), resolution 2/d), [10] (two bends per edge,

size (20n−48)×(10n−24), the angles around vertex v are at least Ω(1/ deg(v))),
[2, 3] (one bend per edge, size O(n)×O(n), resolution Θ(1/Δ)), [5, 6] (one bend
per edge, size (5n)× (5n/2) resolution 1/(2d)).

In this paper we focus on the particularly interesting case when all the edges
are drawn as internally non-intersecting straight-line segments. This kind of
drawings are called straight-line drawings.

There are several known straight-line drawing algorithms, based on the shift
method [7, 8, 4] or on the baricentric method [14, 15]. They draw n-vertex plane
graphs on the (n−2)×(n−2) grid with the angular resolution of order Ω(1/n2).
The quadratic area of the drawing is proved to be asymptotically optimal [7, 8].

� Research supported by KBN grant 4T11C04425.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 250–258, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Planar Straight-Line Drawing in an O(n) × O(n) Grid 251

It is shown that every plane graph has a straight-line drawing with angular
resolution Ω(1/cΔ), where c > 1 is a constant [12, 13]. However in these kind
of drawings not only the angular resolution decreases exponentially with Δ but
also the sizes of the drawings are exponentially large (even for small values of
Δ).

The second type of measure of the angular resolution is less restrictive. Garg
and Tamassia [9] study a dependence between the angular resolution and the
area of the drawing. They show, that for every n ≥ Δ > 6, there exists an n-
vertex planar graph G of degree Δ, such that every straight-line drawing of G
with the angular resolution p has the area at least cpn, where c > 1 is a constant.
Subsequently, when we require the drawing to be of a polynomial size, it is not
possible to achieve angular resolution Ω(1/nε) for any constant ε < 1, even for
degree-7 graphs.

In this paper we show a complementary positive result to the latter bound.
Namely, we present a variant of shift algorithm which runs in O(n) time and
computes a straight-line drawing on the (3n−7)×(3

2n− 7
2) grid with the angular

resolution at least
√

2
3
√

5n
.

2 Preliminaries

Let G = (V, E) be a graph with the vertex set V and the edge set E. We consider
only simple graphs without loops and multiple edges. The degree of vertex v is
defined to be the number of the neighbors of v in G and denoted by deg(v). A
connected graph is said to be biconnected when removal of any vertex doesn’t
disconnect it.

Every planar drawing of G is a function φ mapping the vertices of G into
distinct points in the plane and the edges of G into internally non-intersecting,
continuous curves, such that for each edge (v, w), the corresponding curve φ(v, w)
has ends φ(v) and φ(w). If additionally φ maps all the edges into straight-line
segments we say that it is a straight-line drawing. For brevity we use the same
denotations for graph elements (vertices, edges) and geometrical objects assigned
to them (points, straight-line segments). The meaning will be always clear from
the context. Planar drawing divides the plane into a number of arcwise connected
components called faces. The only unbounded region is referred to as the external
face and the other ones are referred to as internal faces. A plane graph is a planar
graph with a fixed combinatorial embedding – a collection of cyclic orders of edges
around each vertex achievable in a planar drawing.

Let Dist(A, s) denote the distance between point A and straight line s and
Dist(A, CD) be the distance from point A to a straight line through points C
and D. The area of triangle T is denoted by Area(T), coordinates of a point A
are denoted by x(A) and y(A), respectively. The length of a straight-line segment
with endpoints A and B is denoted by |AB|.

252 M. Kurowski

3 Algorithm

Fraysseix, Pach and Pollack [8] introduced the concept of the canonical order of
vertices in a graph. They also proposed a straight-line drawing algorithm based
on so called shift method. To make the paper self-contained we will sketch these
concepts.

3.1 Canonical Order

Describing an algorithm that computes drawings of plane graphs we can often
restrict ourselves to the case when the input graph is a triangulation. This is
because one can triangulate the input graph adding some dummy edges, compute
the drawing of the resulting triangulation and eventually remove the dummy
edges from the picture. So from now on we assume that the input graph is a
triangulation.

Let G be a fixed plane triangulation and p, q, r three consecutive vertices,
in clockwise order, incident with the external face. The labeling v1 = p, v2 =
q, v3, . . . , vn = r is called a canonical order when the following conditions are
satisfied (Gk denotes the subgraph of G induced by vertices v1, . . . vk, Ck denotes
the cycle bounding the external face in Gk).

(i) G3, . . . , Gn are biconnected.
(ii) C2, . . . ,Cn contain edge (p, q).
(iii) In graph Gk, vertex vk lies on cycle Ck and has at least two neighbors which

are consecutive vertices of the cycle Ck−1, for k = 4, . . . , n.

3.2 The Shift Algorithm

Let G be an input triangulation. We compute its straight-line drawing sequen-
tially by adding vertices to the picture according to their canonical order. In the
first three steps we draw graph G3 (a triangle). Vertices v1, v2, v3 are assigned
the points: (1, 1) – the bottom-left corner, (3, 1) – the bottom right corner, (2, 2),
respectively. In the k-th step of the algorithm, for k = 4, . . . , n, we add to the
picture vertex vk and draw the edges between vk and its neighbors in Ck−1.

The algorithm preserves the following invariants ((i), (ii), (iii) are the same
as in [8]). After the k-th step of the algorithm:

(i) A planar straight-line drawing of graph Gk is given, all vertices have integer
coordinates.

(ii) The polyline bounding the picture from above is called a contour. The suc-
cessive vertices in the contour, from the left to the right, are the vertices
of Ck in order: v1 = w1, w2, . . . , wm−1, wm = v2. Additionally x(w1) = 1 <
x(w2) < . . . < x(wm).

(iii) Each edge (wi, wi+1) has slope equal +1 or −1.
(iv) All the angles between the incident edges are at least θ/n, where θ is a

constant that will be defined later (see Theorem 1).

Planar Straight-Line Drawing in an O(n) × O(n) Grid 253

Each time we add a new vertex we have to increase the width of the drawing
and move some vertices in the contour to make space for the new one. Through-
out the process of drawing each vertex wi in the contour maintains its shifting
set Mk(wi). After the k-th step of the algorithm the shifting sets satisfy the
following conditions:

(i) Mk(wi+1) ⊂Mk(wi).
(ii) wi ∈Mk(wi) and wi /∈Mk(wi−1).
(iii) If the vertices from set Mk(wi) are shifted right by any positive distance δ

the drawing remains planar.

It is shown in [8] that shifting sets can be described by a recurrent equation.
Let wl and wr denote respectively the leftmost and the rightmost neighbor of
vk in the contour. After addition, vertex vk is assigned a shifting set Mk(vk) =⋃r

i=l+1 Mk−1(vi). Furthermore, we add vk to the shifting sets of all vertices
preceding vk in the contour. Formally Mk(vi) = Mk−1(vi) ∪ {vk} for i ≤ l and
Mk(vi) = Mk−1(vi) for i ≥ r.

3.3 Providing Good Angular Resolution

Let us define an auxiliary transformation of the drawing called edge relaxation.
When an edge (wi−1, wi) is relaxed in the k-th step of the algorithm, the vertices
from Mk(wi) are moved by one unit to the right.

Assume that we are in the k-th phase of algorithm and we are about to add
vertex v = vk to the drawing. Let wl, wl+1, wl+2, . . . , wr−1, wr be the neighbors
of vk in Ck−1 listed in order of their appearance in the contour, from the left
to the right. In the original algorithm [8], before vk is added to the picture,
only edges (wl, wl+1) and (wr−1, wr) are relaxed. Now we relax all the edges:
(wl, wl+1), (wl+1, wl+2), . . . , (wr−1, wr). If the number of the relaxed edges (i.e.
r − l) is odd the last edge (wr−1, wr) is relaxed once again.

Finally v is added to the drawing in such a way that edges (wl, vk) and
(vk, wr) have slopes 1, −1 respectively. Observe that the total number of the
relaxations during each step is even and therefore v has integer coordinates.

wl

wr

(a) (b)

v

wr

wl

k

Fig. 1. (a) Before adding a new vertex; (b) After that

254 M. Kurowski

Note that the number of relaxations during the k-th step of the algorithm
is at most 2 + ck, where ck denotes the number of the vertices that disappear
from the contour. Hence the total number of relaxations during steps 4, . . . n is
at most

∑n
k=4 ck + 2 ∗ (n− 3) = 3(n− 3) and the dimensions of the grid at the

end of the algorithm are at most W×H where W = 2+3(n−3) and H = $ 12W %.
An example of computations performed by our algorithm is presented in

Figure 2. The pictures show the drawings after adding each successive vertex.

1

8

5

7

4

3
2

6

12

3
4

2

3
4

1 2

3

5

4

5

3

21 1

4

5

3

2

6

1

1 2
3

4
56

7

2

3

8

6 5

1

7

4

9

7

9

8

6

Fig. 2. Drawing a triangulation

3.4 Complexity

A naive implementation of the algorithm from the previous section runs in O(n2)
time. To reduce the complexity to O(n) we can use the technique presented in [4].
Since the necessary modifications in the algorithm from [4] are straightforward
we omit the details.

3.5 Correctness

In this section we show that all the angles that appear in the picture throughout
the process of drawing are of order Ω(1/n). We start with several geometric
lemmas.

Planar Straight-Line Drawing in an O(n) × O(n) Grid 255

Lemma 1. Let c ≥ b ≥ a be the lengths of sides of a triangle T with Area(T) ≥
δb, where δ is a constant. Then all the angles in T are at least 2δ

c .

Proof. Let α be the angle between the sides of lengths b and c. Obviously α is
the smallest angle in T .

α ≥ sin α =
2
bc

Area(T) ≥ 2δ

c

Observe that if T is embedded in the W ×H grid, where W,H = O(n), then
Lemma 1 implies that all the angles in T are of order 2δ√

W 2+H2 = O(1/n).

Lemma 2. Let T be an acute or a right triangle embedded in the W ×H grid.
Then all the angles in T are at least

√
3/2√

W 2+H2 .

Proof. Let γ be the greatest angle in T and a, b (a ≤ b) the lengths of the sides
incident with γ. As T is acute or right we have π

2 ≥ γ ≥ π
3 and thus sin γ ≥

√
3

2 .
Area(T) ≥

√
3

4 ab ≥
√

3
4 b. Now we can apply Lemma 1.

b

A

a

c

X

C

B

s

Y

Fig. 3. Proof of Lemma 3

Lemma 3. Let T be a triangle with vertices A, B, C embedded in the W ×H
grid. Let s be a straight line incident with vertex C but disjoint with the other
points of T (see Figure 3). Let δ be a positive constant. If angle ∠ACB is obtuse,
Dist(A, s) > δ and Dist(B, s) > δ then all the angles in T are at least δ√

W 2+H2 .

Proof. As T is embedded in the W ×H grid, the lengths of its sides are bounded
by
√

W 2 + H2. Let BX and AY be perpendicular to AC and BC respectively.
Observe that |BX| ≥ δ and |AY | ≥ δ. Let us denote a = |BC| and b = |AC|.
Since Area(T) ≥ δ

2a and Area(T) ≥ δ
2b we can apply Lemma 1.

Lemma 4. Consider the situation directly after vertex vk is added, where k =
4 . . . n. Let T be an arbitrary triangle incident with vk. Then all the angles in T

are at least
√

2/2√
W 2+H2 .

256 M. Kurowski

b

A

a

c

B

s

C

x

Fig. 4. Proof of Lemma 4

Proof. Points assigned to vk and its neighbors in Ck−1 are denoted by A, B, C
respectively. We can assume that s has slope −1. The other case is symmetric.
The situation is presented in Figure 4. If T is an acute triangle or a right triangle
we are done due to Lemma 2. Assume that T is obtuse. Notice that ∠BAC ≤ π

2 .
There are two cases to be considered. If ∠CBA is obtuse then AC is the longest
side in T . Since y(B) + 1 ≤ y(C) we have Dist(B,AC) ≥ 1. Finally Area(T) ≥
|AC|/2 and we can apply Lemma 1.

Now assume that ∠ACB is obtuse. Since x ≥ 1 then Dist(B, s) ≥
√

2/2. As
AB has slope at most −1, then also Dist(A, s) ≥ Dist(B, s) ≥

√
2/2 and we

can apply Lemma 3.

s

A

C

B B’

Fig. 5. Shifting does not spoil the angles – T remains obtuse

To complete the correctness proof we shall show that shifting of vertices dur-
ing edge relaxations cannot decrease the angles too much. Consider the drawing
after the k-th step of the algorithm. Let wl, wl+1, . . . , wr−1, wr be consecutive
neighbors of vk in the contour. Notice that vertices wl+1, . . . , wr−1, wr are in
shifting set Mk(vk). Subsequently all three vertices of triangles: &vkwl+1wl+2,
&vkwl+2wl+3, . . .,&vkwr−2wr−1 belong to the same shifting sets. Thus the only
triangles which can be deformed in the further process of drawing are&vkwlwl+1,
called a left-side triangle, and &vkwr−1wr, called a right-side triangle.

Let T be an arbitrary right-side triangle (see Figure 5), the proof for left-side
triangles is symmetric. The only deformation that T can be subjected to is move
of vertex B to the right. Le us denote triangle T after such a transformation
by T ′.

Planar Straight-Line Drawing in an O(n) × O(n) Grid 257

Assume first that T is an obtuse triangle (at the moment of its appearance
in the picture). Notice that Dist(B′, s) ≥ Dist(B, s). Since Lemma 3 can be
applied to triangle T we can apply it also to T ′.

l

A

B

H

C

α β

B’

s

Fig. 6. Shifting does not spoil the angles – T is acute or right

Now assume that T is an acute or a right triangle (see Figure 6). We can also
assume that T ′ is obtuse because otherwise we can apply Lemma 2. Observe
that x(B) > x(A) > x(C) and y(B) < y(A), y(C) < y(A). Let us denote the
straight line crossing A and parallel to the x axis by l, the height of T ′ with
endpoint B′ by B′H and its length by h. Let β denote ∠B′AH, and α be the
angle between AC and l.

Observe that h = |B′A| sin β ≥ |B′A| sin α. Thus we can bound the area of
T ′ as follows:

Area(T ′) =
1
2
|AC|h ≥ 1

2
|B′A||AC| sin α ≥ 1

2
|B′A|.

The last inequality follows from |AC| sin α = Dist(C, l) ≥ 1. Since y(A) > y(B′)
we have also h ≥ Dist(B′, l) ≥ 1 and consequently: Area(T ′) = 1

2 |AC|. Lemma
1 implies that all the angles in T ′ are at least 1√

W 2+H2 .
We have proved the following theorem which bounds the angular resolution

provided by the algorithm presented in the previous section.

Theorem 1. For each n-vertex plane graph there exists a straight-line drawing
in the W × H grid with angular resolution

√
2/2√

W 2+H2 , where W = 2 + 3(n − 3)
and H = $ 12W %.

References

1. G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis, Graph Drawing: Algorithms
for the Visualization of Graphs, Prentice-Hall, 1999.

2. C. C. Cheng, C A. Duncan, M. T. Goodrich and S. G. Kobourov, Drawing Planar
Graphs with Circular Arcs, In Proc. of the 7th Int. Symp. on Graph Drawing, pp.
117-126, 1999.

258 M. Kurowski

3. C. C. Cheng, C A. Duncan, M. T. Goodrich and S. G. Kobourov, Drawing Planar
Graphs with Circular Arcs, Discrete & Computational Geometry 25(3), pp. 405-
418, 2001.

4. M. Chrobak and T. Payne, A linear time algorithm for drawing a planar graph on
a grid, Information Processing Letters 54, pp. 241-246, 1995.

5. C. A. Duncan and S. G. Kobourov, Polar Coordinate Drawing of Planar Graphs
with Good Angular Resolution, In Proc. of the 9th Int. Symp. on Graph Drawing,
pp. 407-421, 2001.

6. C. A. Duncan and S. G. Kobourov, Polar Coordinate Drawing of Planar Graphs
with Good Angular Resolution, Journal of Graph Algorithms and Applications
(JGAA) 7(4), pp. 311-333, 2003.

7. H.Fraysseix, J.Pach and R.Pollack Small sets supporting Fary embeddings of planar
graphs, In Proc. 20th ACM Sympos. Theory Comput., pp. 426-433, 1988.

8. H.Fraysseix, J.Pach and R.Pollack, How to Draw a Planar Graph on a Grid, Com-
binatorica 10, pp. 41-51, 1990.

9. A.Garg and R.Tamassia, Planar Drawings and Angular Resolution: Algorithms and
Bounds, European Symposium on Algorithms, pp. 12-23, 1994.

10. M. T. Goodrich and C. G. Wagner, A Framework for Drawing Planar Graphs
with Curves and Polylines, In Proc. of the 6th Int. Symp. on Graph Drawing, pp.
153-166, 1998.

11. C. Gutwenger and P. Mutzel, Planar Polyline Drawings with Good Angular Reso-
lution, In Proc. of the 6th Int. Symp. on Graph Drawing, pp. 167-182, 1998.

12. S. Malitz, On the angular resolution of planar graphs, In Proc. 24th Annual Sym-
posium on Theory of Computing, pp. 527-538, 1992.

13. S. Malitz and A.Papakostas, On the angular resolution of planar graphs, SIAM
J.Discrete Math. 7, pp. 172-183, 1994.

14. W. Schnyder, Embedding planar graphs in the grid, In Proc. 1st Annual ACM-
SIAM Symp. on Discrete Algorithms, pp. 138-147, 1990.

15. W. Schnyder and W. Trotter, Convex drawings of planar graphs, Abstracts of the
AMS 13, 5, 1992.

Modeling Nested Relationships in XML
Documents Using Relational Databases

Olli Luoma

Department of Information Technology, University of Turku, Finland
olli.luoma@it.utu.fi

Abstract. Structural joins, i.e., operations that determine all occur-
rences of parent/child or ancestor/descendant relationships between
node sets, are at the heart of XML management systems. To perform
these joins, the systems exploit the information about the nested rela-
tionships between elements, attributes, and pieces of text in XML doc-
uments. Since performing the structural joins is often the most time-
consuming phase in query evaluation, the method chosen to model the
nested relationships has a considerable impact on the overall effective-
ness of any XML management system. In this paper, we discuss four
different methods for modeling the nested relationships using relational
databases. We also propose a novel modeling method and present the
results of our comprehensive performance experiments.

1 Introduction

Since its advent, XML [1], a self-describing markup language recommended by
the World Wide Web Consortium, has rapidly been adopted as the standard
for data representation and interchange in computer networks. In recent years,
XML has increasingly been employed to perform more and more duties; in mod-
ern Web service environments, for example, XML can be used as a means to
model software components which automatically construct themselves around
the information expressed in XML [2]. The importance of XML has also passed
over to the area of databases, where XML serves as a format to store hetero-
geneous information which cannot easily be organized into tables, columns, and
rows [3]. Storing, querying and updating XML documents presents an interesting
research problem and a plethora of work has been done on the subject.

From a technical viewpoint, an XML management system can be built in
several ways. The first option is to build a specialized XML data manager. By
building the data manager from scratch one is able to tailor indexing, storage
management, and query optimization specifically to suit XML data. Obviously,
this is a tempting option and many native XML databases, such as Lore [4] and
NATIX [5], have been developed. However, native XML databases often suffer
from scalability and stability problems and it will still take years before they
reach the maturity that can be expected from a practicable XML management
system.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 259–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

260 O. Luoma

Another option is to build an XML management system on top of an object-
oriented database [6] [7]. At first glance, object-oriented databases with their
rich data modeling capabilities may seem to be a perfect solution to the prob-
lem of XML data management, but this is not quite the case. Navigating large
object hierarchies is a rigorous task, and hence the scalability of XML manage-
ment systems built on top of an object-oriented database often leaves a lot to be
desired. Relational databases, on the contrary, provide maturity, stability, porta-
bility, and scalability, so the third alternative, an XML management system on
top of a relational database, is a very viable option. This alternative also allows
the XML data and the relational data coexist in the same database, which is
advantageous, since it is unlikely that XML databases can completely replace
the existing relational database technology in any application area [3] [8].

Since relational databases were originally designed to support non-
hierarchical data, a method for mapping XML data into relational schemas is
needed. The existing mapping methods can roughly be divided into two cat-
egories [9]. In the structure-mapping approach, the database schemas are de-
signed to represent the logical structure or the DTDs of the documents. The
basic method is to create one relation for each element type [8], but more so-
phisticated methods in which the database schema is designed based on detailed
analysis of the document DTDs have also been proposed [10]. Nonetheless, re-
taining the optimality of such a schema can be a rigorous task, since inserting
new documents with different DTDs may result in redesigning the schema and
rebuilding the relations.

The other method is the model-mapping approach in which the database
schemas represent the generic constructs of the XML data model, i.e., element,
attribute, and text nodes. The schemas designed according to the model-mapping
approach are fixed, so documents can be stored without any information of
their DTDs. Furthermore, having a fixed schema simplifies the transformation
of XPath queries into SQL queries [11]. For the aforementioned reasons, we
believe that the model-mapping approach will yield better results than its less
generic counterpart.

When the model-mapping approach is pursued, an incoming document is
first represented as an XML tree, a partially ordered, labeled tree in which each
element, attribute, and text node corresponds to an element, attribute, or piece
of text in the document, respectively; the ancestor/descendant relationships be-
tween the nodes correspond to the nested relationships between elements, at-
tributes, and pieces of text [12]. This tree is then stored into the database and
queried using the query facilities provided by the database management system.

In this paper, we focus on modeling the ancestor/descendant relationships.
We discuss four different methods: parent/child index, pre-/postorder encoding,
ancestor/descendant index, and our own proposal, the ancestor/leaf index, which
maintains the ancestor information for the leaf nodes only. Obviously, this in-
formation can be used to perform structural joins between leaf nodes and inner
nodes; structural joins between inner nodes are performed by checking whether
common leaf node descendants for these inner nodes can be found.

Modeling Nested Relationships in XML Documents 261

The remainder of this paper is organized as follows. In section 2, we briefly
review the related work, and in section 3, we present the different methods for
modeling the nested relationships. The results of our experiments are presented
in section 4; section 5 concludes this article and discusses our future work.

2 Related Work

From the vast amount XML-to-SQL query translation literature [11], the papers
concentrating on mapping XML data into relations pursuing the model-mapping
approach are relevant to our work. Previously, many such methods have been
proposed, two of which are most essential here, namely XRel [9] and XParent
[13]. In XRel, the nested relationships are modeled using region coordinates; a
similar method was also presented in [3]. According to the authors, XRel provides
better overall performance than Edge [8], a structure-mapping method proposed
by Florescu and Kossmann. However, the performance evaluation was carried
out using only one set of XML documents, so the scalability of this approach is
still somewhat in doubt.

XParent, on the contrary, models the structural relationships between nodes
using a parent/child index. The authors compared the effectiveness of their
method against Edge and XRel, but again, the performance evaluation was car-
ried out using one set of documents and a very limited set of queries. The authors
also discussed using an ancestor/descendant index, but did not present any re-
sults from this alternative.

3 Modeling Nested Relationships

In this section, we present the relational schemas used in our tests. Our relational
schemas are designed according to the XPath data model, and thus the element,
attribute, and text nodes1 are stored in three relations Element, Attribute, and
Text, respectively. The nodes are identified using their preorder numbers which
also preserve the information of the order among the nodes.

Since path expressions regularly appear in XPath queries, we preserve the
information about the label paths of the nodes using a Path table which allows
fast retrieval of the nodes according to their label paths. Similar decomposition
of the nodes is used also in both XRel and XParent as well as in many native
XML databases [4].

3.1 Parent/Child Index

The most obvious method for modeling the structural relationships between
nodes is to build a parent/child index which, for a given set of nodes, allows fast

1 According to the original XPath recommendation, there are seven different node
types, but for simplicity, we have omitted root, comment, namespace, and processing
instruction nodes.

262 O. Luoma

retrieval of their parent or child nodes. Since each node has at most one parent,
the identifier of the parent node can be inlined into the same relation with the
node itself. Hence, this approach results in the following relational schema:

Path(PathId, PathExp)

Element(DocId, PreId, ParId, PathId)

Attribute(DocId, PreId, ParId, PathId, Value)

Text(DocId, PreId, ParId, PathId, Value)

In the above schema, the database attributes PathId and PathExp represent
the path identifier and path expression, respectively. For technical reasons [9],
the labels in a path are separated using ”#/” instead of ”/”. In relations Element,
Attribute, and Text, the database attributes DocId, PreId, ParId, and PathId
represent the document identifier, node identifier, the identifier of the parent
node, and path identifier, respectively. The database attribute Value represents
the value of an attribute or text node. In each relation, the underlined set of
attributes serves as the primary key.

However, if we are to retrieve all ancestors of a given node, we need recursive
joins. This can be done using the linear recursion queries of the SQL3 standard,
but if the database management system does not provide such feature, we can
determine the number of needed joins by constructing the SQL queries in accor-
dance with the document DTDs. Obviously, this can lead to very complicated
queries and query generation, since each document may have a different DTD.
Furthermore, XML documents often have to be managed without any DTDs
at all, and thus this method lacks the genericity provided by the other three
alternatives discussed in this paper.

3.2 Pre-/Postorder Encoding

The information about ancestor/descendant relationships can also be implicitly
encoded by using region coordinates [9] or pre-/postorder encoding [14]. The
structural joins can be performed by taking advantage of the following simple
property of preorder and postorder numbes: for any two nodes n1 and n2, n1 is an
ancestor of n2, iff the preorder number of n1 is smaller than the preorder number
of n2 and the postorder number of n1 is greater than the postorder number of n2.
Since both preorder and postorder numbers are needed to perform the structural
joins, we also include the postorder number PostId in the primary key although
attributes DocId and PreId would be enough to identify a node.

Path(PathId, PathExp)

Element(DocId, PreId, PostId, PathId)

Attribute(DocId, PreId, PostId, PathId, Value)

Text(DocId, PreId, PostId, PathId, Value)

For brevity, we have omitted the actual algorithms for translating XPath
queries into SQL queries; for a detailed description we refer the reader to [9].
The idea is to translate the XPath queries first into query trees which are then

Modeling Nested Relationships in XML Documents 263

translated into SQL queries. For example, the query tree corresponding to the
XPath query //a/b[//c=’ecm’]/d translates into the following SQL query:

SELECT DISTINCT e3.DocId, e3.PreId

FROM Element e1, Element e3, Text t2, Path p1, Path p2, Path p3

-- Match path expressions:

WHERE p1.PathExp LIKE ’#%/a#/b’

AND p2.PathExp LIKE ’#%/a#/b#%/c’

AND p3.PathExp LIKE ’#%/a#/b#/d’

-- Retrieve nodes:

AND e1.PathId = p1.PathId

AND t2.PathId = p2.PathId

AND e3.PathId = p3.PathId

-- Match values:

AND t2.Value = ’ecm’

-- Perform structural joins:

AND t2.DocId = e1.DocId

AND t2.PreId > e1.PreId

AND t2.PostId < e1.PostId

AND e3.DocId = e1.DocId

AND e3.PreId > e1.PreId

AND e3.PostId < e1.PostId

Notice that the structural joins are performed using nonequijoins on preorder
and postorder numbers, which can lead to scalability problems when querying
large XML documents. However, splitting the data into many small documents
can be expected to help, since part of the structural joins can then be performed
using equijoins on document identifiers.

3.3 Ancestor/Descendant Index

By building an ancestor/descendant index, i.e., by calculating the transitive clo-
sure over the parent/child relation, we can perform the structural joins com-
pletely without the expensive nonequijoins. To maintain the ancestor/descendant
information, we employ a new relation AncDesc.

Path(PathId, PathExp)

Element(DocId, PreId, PathId)

Attribute(DocId, PreId, PathId, Value)

Text(DocId, PreId, PathId, Value)

AncDesc(DocId, AncId, DescId)

Obviously, this rather extreme approach can result in a very large AncDesc
table. However, since no nonequijoins are needed, this approach should usually
perform better than the pre-/postorder encoding, and thus in applications where
the query performance is of paramount importance, it might just pull its weight.
If this approach is pursued, the XPath query //a/b[//c=’ecm’]/d translates
into the following SQL query:

264 O. Luoma

SELECT DISTINCT e3.DocId, e3.PreId

FROM Element e1, Element e3, Text t2, Path p1, Path p2, Path p3,

AncDesc d2, AncDesc d3

-- Match path expressions as in previous query.

-- Retrieve nodes as in previous query.

-- Match values as in previous query.

-- Perform structural joins:

AND t2.DocId = e1.DocId

AND d2.DocId = t2.DocId

AND d2.AncId = e1.PreId

AND d2.DescId = t2.PreId

AND e3.DocId = e1.DocId

AND d3.DocId = e3.DocId

AND d3.AncId = e1.PreId

AND d3.DescId = e3.PreId

3.4 Ancestor/Leaf Index

We can easily represent the ancestor/descendant information in a more com-
pact manner by using an ancestor/leaf index which, essentially, is an ances-
tor/descendant built on the leaf nodes only. More formally, an ancestor/leaf
index for an XML tree is a set of pairs (n1, n2), where n2 is a leaf node and n1 is
an element node located on the path from n2 to the root of the tree. According
to this definition, nodes n1 and n2 do not have to be distinct, so the leaf nodes
of type element serve a dual purpose. We maintain the ancestor/descendant
information for the leaf nodes in relation AncLeaf.

Path(PathId, PathExp)

Element(DocId, PreId, PathId)

Attribute(DocId, PreId, PathId, Value)

Text(DocId, PreId, PathId, Value)

AncLeaf(DocId, AncId, LeafId)

The leaf nodes are joined with element nodes as they are joined using the
ancestor/descendant index. The structural joins between element nodes can be
performed by checking whether the nodes have common leaf node descendants.
We must also be able to determine which set of the element nodes contains the
ancestors. In many cases, this information can be deduced based on the label
paths of the nodes, but there are some situations where this is not the case2.
However, to simplify the query translation, we always use the lengths of the path
expressions to determine which one of two sets of element nodes contains the
ancestor or descendant nodes. Hence, the XPath query //a/b[//c=’ecm’]/d
translates into the following SQL query:

2 One example of such an instance would be evaluating query //a[a] using document
<a><a><a/>. Without checking the heights, the ancestor/leaf index
would also, incorrectly, return the leaf element <a/>.

Modeling Nested Relationships in XML Documents 265

SELECT DISTINCT e3.DocId, e3.PreId

FROM Element e1, Element e3, Text t2, Path p1, Path p2, Path p3,

AncLeaf f2, AncLeaf f3, AncLeaf f4

-- Match path expressions as in previous query.

-- Retrieve nodes as in previous query.

-- Match values as in previous query.

-- Perform structural joins:

-- Structural join between leaf nodes and element nodes:

AND t2.DocId = e1.DocId

AND f2.DocId = t2.DocId

AND f2.AncId = e1.PreId

AND f2.LeafId = t2.PreId

-- Structural join between element nodes:

AND LENGTH(p1.PathExp) < LENGTH(p3.PathExp)

AND e3.DocId = e1.DocId

AND f3.DocId = e3.DocId

AND f3.AncId = e1.PreId

AND f4.DocId = f3.DocId

AND f4.AncId = e3.PreId

AND f4.DescId = f3.DescId

Notice that the nonequijoin is now performed using the Path table which
usually contains only a small number of rows, so this join is not as expensive as
the nonequijoins performed using the pre-/postorder encoding.

4 Experimental Results

Because of the lack of genericity in the parent/child approach, we conducted the
performance evaluation only for the pre-/postorder encoding (PP), the ances-
tor/descendant index (AD), and the ancestor/leaf index (AL). We used three
different sets of XML documents: the 7.65 MB collection of Shakespeare’s plays
[15], a synthetic 111 MB XMark document generated using XMLgen [16], and
a 127 MB XML document generated from the DBLP database [17]. The Shake-
speare collection consisted of 37 documents and the other collections consisted
of only one document.

Table 1. Database sizes for PP

Shakespeare XMark DBLP
Relation Tuples Size(MB) Tuples Size(MB) Tuples Size(MB)
Path 57 0 548 0 145 0
Element 179618 8 1666315 73 3332130 135
Attribute 0 0 381878 27 404276 28
Text 147383 12 1188922 139 3005857 201
Total 327058 20 3237663 239 6742408 364

266 O. Luoma

Table 2. Database sizes for AD

Shakespeare XMark DBLP
Relation Tuples Size(MB) Tuples Size(MB) Tuples Size(MB)
Path 57 0 548 0 145 0
Element 179618 6 1666315 58 3332130 107
Attribute 0 0 381878 22 404276 23
Text 147385 11 1188922 129 3005857 175
AncDesc 1406939 44 16807315 520 16243275 513
Total 1733999 61 20044978 729 22985683 818

Table 3. Database sizes for AL

Shakespeare XMark DBLP
Relation Tuples Size(MB) Tuples Size(MB) Tuples Size(MB)
Path 57 0 548 0 145 0
Element 179618 6 1666315 58 3332130 107
Attribute 0 0 381878 22 404276 23
Text 147383 11 1188922 129 3005857 175
AncLeaf 729554 22 9278809 289 9904635 319
Total 1056612 39 12516472 498 16647043 624

Table 4. Query evaluation times (in seconds)

Query PP AD AL Tuples
1 //ACT/TITLE 0.00 0.00 0.00 185
2 //ACT[//SPEAKER=’EDMUND’] 0.48 0.03 0.02 5
3 //ACT[//STAGEDIR=’Aside’] 5.94 0.14 0.08 89
4 //ACT[//SPEAKER=’EDMUND’]/TITLE 4.16 4.76 21.48 5
5 //people//profile 0.17 0.16 0.16 12832
6 //item[//location=’Finland’] 2.91 1.54 1.39 16
7 //item[@featured=’yes’] >300 1.13 0.45 2210
8 //item[@featured=’yes’]//location >300 11.06 16.03 2210
9 //article/author 3.65 3.30 3.30 221465
10 //article[@rating=’SUPERB’] 8.39 2.00 2.00 11
11 //article[author=’Jukka Teuhola’] 15.34 0.22 0.09 27
12 //article[author=’Donald E. Knuth’]/year 61.91 2.05 1.94 55

We stored these collections into MySQL databases pursuing approaches PP,
AD, and AL, and built indexes on Element(PathId), Attribute(PathId),
Text(PathId), AncDesc(DocId, DescId), and AncLeaf(DocId, LeafId). We
also built indexes on first three characters of the attribute Value in relations
Attribute and Text. The database sizes for PP, AD, and AL are presented in
Tables 1-3. According to these experiments, AD results in three times and AL
in two times larger database than PP; the size of AncLeaf table is roughly half
of the size of the AncDesc table.

Modeling Nested Relationships in XML Documents 267

We evaluated the query performance of the three approaches by using four
queries for each collection; the queries and the query evaluation times are pre-
sented in Table 4. Queries 1-4 were evaluated using the Shakespeare collection,
queries 5-8 using the XMark document, and queries 9-12 using the DBLP docu-
ment. Queries 1, 5, and 9 are simple path expression queries which do not involve
structural joins, and thus all three approaches perform well.

Queries 2, 3, 6, 7, 10, and 11 involve a structural join between leaf node and
inner node, so these queries provide information especially about the perfor-
mance of PP against AD and AL. On large documents (queries 6, 7, 10, and 11),
AD and AL quite clearly outperform PP, since in PP, the structural joins com-
pletely have to be performed using expensive nonequijoins on pre- and postorder
numbers. However, when the collection is splitted into many documents (queries
2 and 3 on the Shakespeare collection), PP performs relatively well. Queries 7
and 8 involve structural joins between massive node sets of thousands of nodes,
so PP performs very poorly. Thus, it can be argued that the scalability of PP
leaves a lot to be desired.

Queries 4, 8, and 12 involve structural joins also between inner nodes, so these
queries can be used to compare AD against AL. Overall, AL seems to perform
almost as well as AD, but as an interesting detail, we found that both AD and PP
outperform AL on query 4. Thus, although AL does not suffer from the severe
scalability problems of PP demonstrated by queries 7 and 8, joining node sets
with large number of leaf node descendants pursuing AL is still rather expensive.
This finding also suggests that splitting large documents into smaller entities
before inserting them into the database would lead to considerable performance
gains in PP, since part of the structural joins can then be carried out using
equijoins on document identifiers.

5 Concluding Remarks

In this paper, we discussed four different methods for modeling the nested rela-
tionships between elements, attributes, and pieces of text in XML documents.
We also proposed a new approach, namely the ancestor/leaf index. We pre-
sented the relational schemas designed according to these models and presented
our experimental results which clearly demonstrated the trade-off between stor-
age consumption and query performance. When building an XML management
system on a relational database, one should consider both this trade-off and the
requirements of the application area. For example, if the management system
will be used to store only web pages, using ancestor/descendant index or ances-
tor/leaf index would be a waste of space, since web pages written in XML are
usually only kilobytes in size.

One interesting detail in our experimental results was the relatively good per-
formance of pre-/postorder encoding when many small documents were queried.
Considering that this approach only consumes half of the disk space consumed
by the ancestor/leaf approach, it might be worthwhile to develop methods for
splitting large XML trees before inserting them into the database. In this case,

268 O. Luoma

we obviously need ways to perform structural joins between node sets that reside
in separate trees, which presents an interesting research problem.

References

1. World Wide Web Consortium. Extensible Markup Language (XML) 1.0.
http://www.w3c.org/TR/REC-xml, 2000.

2. D. Florescu, A. Grünhagen, and D. Kossmann. An XML Programming Language
for Web Service Specification and Composition. IEEE Data Engineering Bulletin,
24(2): 48-56, 2001.

3. A. B. Chaudri, A. Rashid, and R. Zicari. XML Data Management: Native XML
and XML-Enabled Database Systems. Addison-Wesley, 2003.

4. J. McHugh, S. Abiteboul, R. Goldman, R. Quass, and J. Widom. Lore: A database
management system for semistructured data. SIGMOD Record, 26(3): 54-66, 1997.

5. C.C. Kanne and G. Moerkotte. Efficient storage of XML data. Poster abstract in
Proc. of the 16th Intl Conf. on Data Engineering, page 198, 2000.

6. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured docu-
ments to novel query facilities. In Proc. of 1994 ACM SIGMOD Intl Conf. on
Management of Data, pages 313-324, 1994.

7. R. v. Zvol, P. Apers, and A. Wilschut. Modelling and querying semistructured data
with MOA. In Proc. of the Workshop on Query Processing for Semistructured Data
and Non-Standard Data Formats., 1999.

8. D. Florescu and D. Kossmann. A performance evaluation of alternative mapping
schemes for storing XML data in a relational database. Technical Report 3684,
INRIA, 1999.

9. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A path-based
approach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technologies, 1(1): 110-141, 2001.

10. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: limitations and op-
portunities. In Proc. of the 25th Intl Conf. on Very Large Databases, pages 302-314,
1999.

11. R. Krishnamurthy, R. Kaushik, J.F. Naughton. XML-to-SQL query translation
literature: the state of the art and open problems. In Proc. of the 1st Intl XML
Database Symposium, pages 1-18, 2003.

12. World Wide Web Consortium. XML Path Language (XPath) Version 1.0.
http://www.w3c.org/TR/xpath, 2000.

13. H. Jiang, H. Lu, W. Wang, and J. Xu Yu. Path materialization revisited: an efficient
storage model for XML data. In Proc. of the 13th Australasian Database Conf.,
pages 85-94, 2002.

14. P.F. Dietz. Maintaining order in a linked list. In Proc. of the 14th ACM Symp. on
Theory of Computing, pages 122-127, 1982.

15. J. Bosak. The complete plays of Shakespeare marked up in XML.
http://www.ibiblio.org/xml/examples/shakespeare

16. R. Busse, M. Carey, D. Florescu, M. Kersten, I. Manolescu, A.
Schmidt, and F. Waas. XMark - an XML benchmark project.
http://monetdb.cwi.nl/xml/index.html

17. M. Ley. Digital bibliography library project. http://dblp.uni-trier.de/

RAQ: A Range-Queriable Distributed Data
Structure

Hamid Nazerzadeh and Mohammad Ghodsi

Computer Engineering Department,
Sharif University of Technology, Tehran, Iran

Abstract. Different structures are used in peer-to-peer networks to
represent their inherently distributed, self-organized, and decentralized
memory structure. In this paper, a simple range-queriable distributed
data structure, called RAQ, is proposed to efficiently support exact
match and range queries over multi-dimensional data. In RAQ, the key
space is partitioned among the network with n nodes, in which each ele-
ment has links to O(log n) other elements. We will show that the look-up
query for a specified key can be done via O(log n) message passing. Also,
RAQ handles range-queries in at most O(log n) communication steps.

1 Introduction

Distributed and peer-to-peer networks are significant components of recent re-
search on networking. There is a simple idea behind the peer-to-peer networks:
each node maintains its own index and searching mechanism compared to the tra-
ditional client-server architecture with global information. The significant growth
in the scale of such networks, (e.g. Gnutella [4]), reveals the critical emerging
need to develop decentralized searching methods. A peer-to-peer storage sys-
tem can be considered as a large scale distributed decentralized data structure.
We use the term Queriable Distributed Data Structure (QDS) to denote such a
self-organized, decentralized, distributed, internet-scale structure which provides
searching and data transferring services. New file sharing systems such as Scour,
FreeNet, Ohaha, Kazaa and Jungle Monkey are examples QDS from current
internet systems.

In QDS, every node of the network is an element of the whole structure,
which provides decentralized searching services over the data scattered among
the nodes of the network.

Distributed Hash Table (DHT) [15, 11] can be viewed as a QDS. In DHT
systems, keys and data are stored in the nodes of the network using a hash
function, in which data can be the addressing information (e.g. ip address of the
server containing the data), rather than its actual data. Searching mechanism in
these systems consists of two main phases: (1) hashing the key, and (2) querying
the network to find the node that contains the key. This node handles the query
by providing the actual data or its addressing information.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 269–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

270 H. Nazerzadeh and M. Ghodsi

Similarly, some other systems like SkipNet [6] are designed based on more
theoretical data structures like skip graphs [2], allows more flexibility on the
location of the data on the nodes of the network.

In this paper, we propose RAQ, a range-queriable distributed data structure
to handle exact match and range queries over multi-dimensional data efficiently.
In RAQ, the key space is partitioned among the n nodes of the network, in
which each element has links to O(log n) other elements of the network. We will
show that the look-up query for a specified key can be done, in our structure,
via O(log n) message passing. The bound on the out-degree of the nodes and
the exact-match query cost are both comparable to those in DHT systems like
Chord [15], CAN [11], Pastry [13] and Viceroy [9].

The main contribution of RAQ is that it is simple and can handle range-
queries in multi-dimensional space. Our data structure supports such queries
in at most O(log n) communication steps. Split the Space, Duplicate the Query
is a novel approach used by the RAQ to resolve range-queries. This method
anticipates the answer space of the query at the source and spreads the query
only through the appropriate nodes by duplicating the query meanwhile each of
the new queries addresses a reduced subspace.

Most other QDS systems do not support multi-dimensional range-queries,
because they mostly use one-dimensional key space. CAN [11] supports multi-
dimensional key space, but despite of its similarity to RAQ’s basic structure,
the out-degree of node and its routing cost depend on the dimension of the key
space. For a d dimensional space, the average routing path length in CAN is
(d/4)(n1/d) hops and individual nodes maintain 2d neighbors. This limitation
forces the system to use hashing to reduce the dimension. But, since hashing
destroys the logical integrity of the data, such systems cannot support range
queries over multi-dimensional data efficiently.

In this paper, we first overview the related works briefly, followed by the
principal ideas and structures of RAQ. Query handling methods are discussed
in sections 5 and 6, followed by the algorithms for joining and leaving a node.

2 Related Works

Supporting range queries in QDS systems has been the subject of several recent
works. In SWAM [3], for example, the key space is partitioned according to
Voronoi Tesselation. By this property, and using links based on Small-World
Phenomenon [8, 10], SWAM resolves k-nearest-neighbor search and range queries
via O(log n + R) message passing, where R is the size of the answer. But, the
number of links of each node grows exponentially with the dimension size [14].

Prefix Hash Tree is a solution proposed by Rantasamy et. al [12] to face
the problem of hashing used in DHTs that destroys the integrity of the data.
Their approach is based on distributed trie. Given a query, this system attempts
to recognize the longest prefix of the query that appears as a trie-node. The
complexity of this operation is O(log log d × log n), where d is the size of the
discrete domain.

RAQ: A Range-Queriable Distributed Data Structure 271

Recently, some authors have addressed the problem from the load balancing
viewpoint. Karger and Ruhl [7], offer an approach to overcome the known lim-
itation of hash functions, by designing an algorithm to maintain load balance
in not-uniform distributed key space. Aspens et al. [1] have proposed a similar
solution based on skip graphs.

Gao and Steenkiste [5], present a QDS which relies on a logical tree data
structure, the Range Search Tree (RST), to support range queries in one dimen-
sional space. In this system, nodes in RST are registered in groups. To handle
the range queries, queries are decomposed into a small number of sub-queries
where the cost depends on the load factor of the data and query capacity of the
nodes in the network.

3 Partition Tree

We have n points in our d-dimensional space. Partition Tree, Pd, is the main data
structure used in RAQ. Similar to the data structure used in [11], Pd partitions
the d-dimensional space, so that in the final level, each region has only one point.
Each internal vertex of the tree corresponds to a region in space, and the root
represents the whole space. Each pair of the sibling vertices divide their parent
region into two parts, and each leaf represents an undivided region called a cell,
each corresponds to one single point in that region. Figures 1 portrays the
partitioning of P2.

8

 1

 2

4

 6

 7 8

11

5

3

1 2

4
9

10

6

7

Fig. 1. The partition tree, P2, on the left corresponds to the points on the right

Each vertex x is assigned a label to specify the region space of x. We define
xlabel = ((p1, d1), (p2, d2), · · ·, (pr(x), dr(x))) where:

r(x): The distance of x from the root of the tree.
pi: The plane equation that partitions the current region into two parts.
di: Determines one side of the plane pi.
parent(x)label = ((p1, d1), · · · , (pr(x)−1, dr(x)−1))

272 H. Nazerzadeh and M. Ghodsi

sibling(x)label = ((p1, d1), · · · , (pr(x), d̄r(x))), where d̄i is the opposite side of di.
rootlabel = λ, i.e. the empty string.

We treat the labels as strings. The expression l1 � l2 means that l1 is a prefix
of l2, |l| represents the size of l (i.e. the number of (pi, di) pairs) and + is the
concatenation operator. Also, [l] def= {x ∈ V |l � xlabel} where l is a label and V
is the vertex set of the partition tree. Obviously, for a vertex x, |xlabel| = r(x).

4 Design Principles of RAQ

RAQ is a structure on the nodes of a network. Each node maps to one point in
the d dimensional search space. A partition tree Ptree is constructed over the
points and thus each node corresponds to a single cell. We say that a node owns
its cell and is responsible for providing data to the queries targeting any point
in that cell. Since there is a one-to-one map between nodes and the leaf points
of the partition tree, we use them interchangeably. So, for example, we assume
having labels for each node.

Moreover, each node has several links to other nodes of the network. Each
link is basically the addressing information of the target node which can be its
ip address. The links are established based on the partition tree information and
the following rule.

Connection Rule: Consider node x and its label xlabel = ((p1, d1), (p2, d2),
· · · , (pk, dk)). The connection rule of node x implies that x is connected to exactly
one node in each of these |xlabel| sets:

[((p1, d̄1))] , [((p1, d1), (p2, d̄2))] , · · · , [((p1, d1), (p2, d2), · · · , (pk, d̄k))]

For example, in figure 1, node 1 is connected to one node in each of these sets:
{2}, {4}, {6, 7, 8}. We will show that the join and leave mechanisms guarantees
the maintenance of connection rule over the network.

Lemma 1. An arbitrary chosen vertex has link to O(log n) other nodes in the
network.

It is important to note that the partition tree is not directly maintained
by the elements of RAQ; given the coordinates and the labels of the leaves, all
information of the partition tree can be uniquely obtained, and these are the only
data which are maintained by the nodes of the network. In fact, the partition
tree is the virtual data structure of RAQ.

It is obvious that Ptree is a balanced tree with the height of O(log n) when it
is first constructed. We will argue that this property holds even in the dynamic
environment where the nodes join and leaves the network.

RAQ: A Range-Queriable Distributed Data Structure 273

5 Exact Match Query

In RAQ, exact-match queries are of the form Exact−Query(target, metadata).
The value of target is the coordinate of the point that is searched for and meta-
data contains the data to be used after the query reaches the target. Note that
the queries aim to reach the target and the responses vary in the different cases.
As mentioned, the target of a query is a node whose region contains the query
target point.

We say, a point p matches a label l at level k, if k is the greatest value of i such
that the subspace induced by a vertex x with xlabel =((p1, d1), (p2, d2),· · ·, (pi, di))
contains p and xlabel � l. In other words, say l represents a leaf y in Ptree. Then,
x is the lowest common ancestor of y and the node containing p.

Lemma 2. Suppose node x receives a query targeting point p and p matches
xlabel at level k. If k = |xlabel| then the cell of x contains p. Otherwise, x has a
link to a node y so that ylabel matches p at a level greater than k.

Proof. Let xlabel = ((p1, d1), · · ·, (pr(x), dr(x))). If k = |xlabel|, then, obviously, x
contains p. If not, from the connection rule, we know that x is linked to a node y
with ((p1, d1), · · ·, (pk+1, d̄k+1)) � ylabel. Therefore, according to the definition,
p matches ylabel at a level not less than k + 1. ��

Now, the algorithm for exact match routing becomes clear. Once the query
Q is received by a node x, if x contains the target point, then we have done.
Otherwise, x sends the query via a link to a node y with a label that matches
the target point at a higher level. This will continue until the query reaches the
target.

Theorem 1. The exact match query resolves via O(log n) message passing.

Proof. Suppose the target of query Q is the node x. From lemma 2, Q will reach
to x in at most |xlabel| steps and |xlabel| = O(log n). So, the routing operation is
performed by O(log n) message passing. ��

6 Range Query

We assume that a range query Q is of the form Range-Query(label, pivot, func,
d1, d2, metadata) where label implies that Q must be sent only to the nodes x
so that label � xlabel, we denote the label of Q by Qlabel. The initial value of
Qlabel is set to empty string. The value of pivot is the coordinate of the point
that the distances are measured from, and func is the distance function.

The above range query means that Q should be sent to every node in the
network with the distance of d1 ≤ d ≤ d2 from pivot. func can be any distance
function F with the following characteristic: Given a point p, a hyper-cubic
subspace S and a distance d, let A = {x|x ∈ S and F(x, p) < d}. The problem of
whether or not A is empty must be computable. For example, F can be Lp-norm
function, in which case the answer space of Q is {x|d1 ≤ (

∑
(pi − xi)p)1/p ≤ d2}.

274 H. Nazerzadeh and M. Ghodsi

To handle the range queries, we use split the space, duplicate the query
method, or split-duplicate for short. Suppose that node x receives a range query
Q and xlabel = ((p1, d1), · · ·, (pr(x), dr(x))). Obviously, Qlabel � xlabel. If Qlabel =
xlabel, then x itself will give the appropriate response. Otherwise, we iterate the
following sequence of operations:

1. Duplicate Q and name the results as Q1 and Q2. Set Q1label
= Qlabel +

(p|l|+1, d|l|+1) and Q2label
= Qlabel + (p|l|+1, d̄|l|+1).

2. If the answer space of Q has intersection with the subspace induced by
Q2label

, then send Q2 via the link to node y where Q2label
� ylabel. Note that

by the connection rule, y exits.
3. Iterate split-duplicate operation subsequently on Q1, while the split subspace

has intersection with the answer space.

Lemma 3. If node x receives range query Q, then Q will be routed to all nodes
y where Qlabel � ylabel, and the intersection of the cell of y and answer space of
Q is not empty.

Proof. We prove this by backward induction on |Qlabel|. If |Qlabel| > |xlabel|,
then obviously Qlabel �� xlabel thus the induction basis holds.

Suppose that x receives the query and the induction hypothesis holds for
k > |xlabel|. If Qlabel = xlabel then x is the only target of the query and we
are done. Otherwise, two new queries are generated by the algorithm, while the
second query Q2 is sent to its adjacent node via an appropriate link, if the
subspace induced by Q2label

has nonempty intersection with the answer space.
The size of the labels of these new queries is increased by one. Thus, by the
induction hypothesis, Q will be routed to all nodes z with Qlabel � zlabel where
the cell of z has a nonempty intersection with the answer space. The union of
the induced spaces of these labels covers the whole space of Qlabel. The claim is
therefore correct. ��

Theorem 2. RAQ resolves range queries in at most O(log n) communication
steps. In other words, a query will be received by a target node by crossing
O(log n) intermediate hops.

Proof. As we mentioned, the basic-queries enters the system by initializing its
label to an empty string. By lemma 3, the range-query will be received by all
nodes whose cells have nonempty intersections with the query answer space. In
each communication step, the size of the query label is increased at least by 1.
Thus, when a node receives a query, the distance to the source must be O(log n),
or equivalently the size of the label. ��

7 Joining and Leaving

In this section, we describe the joining and leaving mechanism and demonstrate
the validity of our claim in section 4 that the partition tree remains balanced
all the time.

RAQ: A Range-Queriable Distributed Data Structure 275

7.1 Joining Mechanism

Suppose that node x wants to join to the network. x chooses a fairly random
point p, in the space and finds y one of the active nodes in the network. Several
mechanism can be adopted for the arriving node to find an active node; we
assume that RAQ uses the same mechanism as in can [11].

Sending an exact match query by y to find the node z whose cell contains p.
z divides its cell into two parts, with one containing the corresponding point of
z and the other includes p. We assume that x possess the cell containing p. This
is just a simple insertion into the partition tree. This is done by updating the
labels of x and z. Since we are not directly maintaining this tree, this update is
sufficient.

The connections are now updated to follow the given connection rule: x
chooses one random point in each of the subspaces induced by the labels specified
by the connection rule. For each of these points, say r, z routes an exact match
query to find the node that owns r. Consequently, x establishes a connection
link to this node.

Theorem 3. Join operation is done via O(log2 n) message passing.

Proof. The arriving node finds its region by an exact match query. By lemma 1,
the arriving node has to create O(log n) connections. Establishing each connec-
tion is done by a exact-match lookup, via O(log n) message passing. Therefore,
the whole operation is completed by O(log2 n) message passing. ��

7.2 Leaving Mechanism

Let x be the node that wants to leave the network. After x leaves the network,
its sibling in Ptree will maintain the region once belonged to x. From Ptree
viewpoint, leaving is just a simple deletion of a leaf in a binary tree, so zlabel and
thus Ptree will be updated easily. The difficult part is updating the connection
links of the nodes that have links to x. To handle this issue Departure links or
for short dlinks, are defined below.

In RAQ, node b maintains addressing information of a, or a dlink to a, when
node a establishes a connection link to node b. When b decides to leave the
network, it sends a message to each of the nodes referred to by its dlinks. In the
following, we denote d-degree of b as the number its dlinks.

Theorem 4. The expected value of d-degree is O(log n)

Proof. Here we argue the validity of our claim. From the mechanism described
above to establish a connection link, and from the dynamic structure of the
network where the nodes frequently join to and leave the network, we can fairly
conclude that the probability that a node v has a link to a node u is equal to the
probability that u has a link to v. We avoid discussing the uncomplicated details
of this claim, due to the lack of space. Accordingly, E[vdegree] = E[vd−degree] for
an arbitrary node v in the network. ��

276 H. Nazerzadeh and M. Ghodsi

Corollary 1. By lemma 1 and theorem 4, each nodes of the network maintains
the addressing information of O(log n) nodes of the network.

Consider the time when x is to leave the network. x sends a departure message
to all of its nodes on its dlink. As mentioned, every connection in RAQ is a link
to a subspace, each of the nodes that receives this departure message, chooses
a new random point, say p, in the corresponding subspace and sends an exact
match query via x to establish a new connection link to the node that possesses
p. After these operations, x will peacefully leaves the network and the connection
rule of RAQ is maintained.

Theorem 5. The leave operation is done via O(log2 n) message passing.

Proof. According to theorem 4, O(log n) links must be updated. Each update
is performed by O(log n) message passing, thus the total number of message
passing is O(log2 n). ��

According to the discussion, arriving nodes are distributed all over the space.
Thus, the partition grows uniformly and remains balanced. Uniform distribution
of the nodes also implies that the nodes leave the network randomly in the entire
space. We can thus conclude that the claimed proposition about the balancing
of the partition tree is valid.

8 Conclusion

In this paper we presented RAQ, a range-queriable distributed data structure
for peer-to-peer networks to organize the multidimensional data it holds, and
to efficiently support exact and range queries on the data. Our structure is
easy to implement and use O(log n) memory space for each of its n nodes. The
exact match query can be performed, as in other works, by O(log n) message
passings. The main contribution of this paper is that the structures broadcast
the range query to the target nodes within at most O(log n) link traversing steps.
We showed that all properties of RAQ can be maintained when nodes join the
network or leave it.

We are currently working on other extensions of the RAQ model, including
its probabilistic model to reduce the complexity of the degree of the nodes in the
network. We also intend to validate our results through experimental evaluation
with real data. Other ideas can be to design a fault tolerant model to handle
different faults such as the situation the nodes abruptly leave the network or
abstain to handle the queries temporarily. Load balancing is another important
property of the RAQ to look at. In this case, we are going to study the situations
that the data points are not uniformly distributed in the search space; also, the
computing power of the nodes of network are different. Further works on these
topics are underway.

RAQ: A Range-Queriable Distributed Data Structure 277

References

1. J. Aspnes, y. Kirschz, A. Krishnamurthy. Load balancing and locality in range-
queriable data structures. in Prod, PODC the twenty-third annual ACM sympo-
sium on Principles of distributed computing

2. J. Aspnes and G. Shah. Skip Graphs. In Proceedings of Symposium on Discrete
Algorithms, 2003.

3. F. Banaei-Kashani and C. Shahabi, SWAM: Small-World Access Model. In Proc.
CIKM 2004, Thirteenth Conference on Information and Knowledge Management
CIKM 2004, Nov 2004.

4. Gnutella, http://gnutella.wego.com
5. J. Gao and P. Steenkiste, An Adaptive Protocol for Efficient Support of Range

Queries in DHT-based Systems. Proc. 12th IEEE International Conference on Net-
work Protocols (ICNP’04), Berlin, Germany, Oct. 2004.

6. N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A
Scalable Overlay Network with Practical Locality Properties. In Proc. of Fourth
USENIX Symposium on Internet Technologies and Systems, 2003.

7. D. R. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms for Peer-to-
Peer Systems. In ACM Symposium on Parallelism in Algorithms and Architectures,
June 2004.

8. J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proc.
32nd ACM Symposium on Theory of Computing (STOC 2000), pages 163-170,
2000.

9. D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emula-
tion of the butter y. In Proc 21st ACM Symposium on Principles of Distributed
Computing (PODC 2002), pages 183-192, 2002.

10. H. Nazerzade. Making Querical Data Networks Navigable. In Proc. ICI 2004 In-
ternational Conference on Informatic, Sep 2004.

11. S. Ratnasamy, P. Francis, M. Handley, and R. M. Karp. A scalable content-
addressable network. In Proc. ACM SIGCOMM 2001, pages 161-172, 2001.

12. S. Ratnasamy, J. Hellerstein, and S. Shenker. Range Queries over DHTs. Technical
Report IRB-TR-03-009, Intel Research, 2003.

13. A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2001), pages 329-350,
2001.

14. R. Seidel. Exact upper bounds for the number of faces in d-dimensional Voronoi
diagrams, DIMACS Series, volume 4. American Mathematical Society, 1991.

15. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proc. ACM
SIGCOMM 2001, pages 149-160, 2001.

On Some Weighted Satisfiability and
Graph Problems

Stefan Porschen

Institut für Informatik, Universität zu Köln, D-50969 Köln, Germany
porschen@informatik.uni-koeln.de

Abstract. In the first part of this paper we address several weighted
satisfiability problems. Among others, we provide linear time algorithms
solving the optimization problems MINV(MAXV)-NAESAT and MINV
(MAXV)-XSAT for 2CNF formulas and arbitrary real weights assigned
to the variables. In a second part we consider the relationship between
the problems maximum weight independent set (MAX-IS) in a graph
and the problem XSAT. We show that the counting problem #XSAT
can be solved in time O(20.40567n) thereby significantly improving on a
bound O(20.81131n) provided in [4].

Keywords: (weighted) exact satisfiability, not-all-equal satisfiability,
maximum weight independent set, counting problem, exact algorithm,
NP-completeness.

1 Introduction and Notation

The classical satisfiability problem (SAT) is a prominent problem, namely one
of the first problems that have proven to be NP-complete [3]. Till nowadays
SAT plays a fundamental role in computational complexity theory and in the
theory of designing exact algorithms. SAT also has a wide range of applications
occuring via reduction from the corresponding abstract problem kernel to SAT.
This is helpful due to the fact that meanwhile several powerful solvers for SAT
have been developed (cf. e.g [7] and refs. therein). Weighted satisfiability is a
natural generalization of SAT and has also important applications (e.g. in the
area of code generation [1, 6]).

In the present paper we focus on some satisfiability problems for propositional
formulas in conjunctive normal form (CNF)and graph problems related to them.
In a first part, we show that XSAT and NAESAT (defined below) can be solved
in linear time for 2CNF formulas when arbitrary weights are assigned to the
variables. Further we show that XSAT can be solved in polynomial time for
monotone formulas in which each variable occurs at most twice and has an arbi-
trary weight. In a second part we consider the connection between the problems
XSAT and maximum weight independent set for graphs. Specifically, we provide
an exact algorithm for counting all XSAT models of an arbitrary CNF formula.
This algorithm runs in time O(20.40567n) and thus significantly improves an algo-
rithm in [4] with running time O(20.81131n), where n is the number of variables.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 278–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Some Weighted Satisfiability and Graph Problems 279

To fix the notation, let V = {x1, . . . , xn} be a set of propositional variables,
where xi ∈ {0, 1}. A literal is a variable x or its negation x := ¬x (negated vari-
able). The complement of a literal l is denoted as l. A clause c is the disjunction
of different literals and thus is represented as a literal set. A CNF formula C
is a conjunction of different clauses and is thus represented as a clause set. For
short we use throughout the term “formula” meaning a clause set as defined.
For a given formula C, clause c, by V (C), V (c) we denote the set of variables
contained in C, c, respectively. Similarly given a literal l, V (l) denotes the un-
derlying variable. We distinguish between the length ‖C‖ of a formula C and
the number |C| of its clauses. Let CNF denote the set of all formulas. For k ∈ N
let kCNF denote the set of formulas C such that |c| ≤ k for each c ∈ C. For
r ∈ N, let CNF(r) denote the set of formulas in which each variable occurs in at
most r different positions either negated or unnegated. CNF+ denotes the set of
positive monotone formulas, i.e., each clause contains only variables, no negated
variables.

The satisfiability problem (SAT) asks in its decision version, whether an input
formula C is satisfiable, i.e., whether C has a model, which is a truth assignment
t : V (C) → {0, 1} assigning at least one literal in each clause of C to 1. In its
search version SAT means to find a model t if the input formula is satisfiable.
There are some interesting variants of SAT, namely exact satisfiability (XSAT)
and not-all-equal satisfiability (NAESAT). XSAT means to find a truth assign-
ment that assigns exactly one literal of each clause of C to 1, called an XSAT
model. NAESAT searches for a truth assignment that assigns at least one lit-
eral in each clause of C to 1 and at least one literal to 0, called a NAESAT
model. The decision versions of XSAT and NAESAT are defined analogously.
Both XSAT and NAESAT are known to be NP-complete [10]. The empty set
also is a formula: ∅ ∈ CNF which is satisfiable w.r.t. all variants. However, a
formula C containing the empty clause (∅ ∈ C) is never satisfiable.

When weights are assigned to the variables we obtain the weighted variants
of the defined problems: Given C ∈ CNF and w : V (C) → R, problem MINV-
SAT asks whether C is satisfiable and if, searches for a minimum model for C,
i.e., a model t of minimal variable weight w(t) :=

∑
x∈t−1(1) w(x) among all

models of C. The maximum version MAXV-SAT is defined analogously. Also
MINV(MAXV)-XSAT and MINV(MAXV)-NAESAT are defined analogously.
We shall make use of some graph concepts assigned to formulas. For a monotone
formula C ∈ CNF+, we have two corresponding graph concepts: First, the for-
mula graph GV (C) with vertex set V (C). Two vertices are joined by an edge if
there is a clause in C containing the corresponding variables. Second, the clause
graph GC with vertex set C. Two vertices are joined by an edge if the corre-
sponding clauses have a non-empty intersection. Observe that, given a monotone
formula C, each graph concept above can be computed in time O(‖C‖2|V (C)|)
or better. Finally, to an arbitrary formula C ∈ CNF, we can assign its bipartite
incidence graph IC with vertex set V (C)∪C. For a variable x occuring in clause
c (regardless whether negated or unnegated) an edge x−c is introduced. We call
a formula C ∈ CNF connected if its incidence graph IC is connected. Observe
that the incidence graph of a formula C can be computed in time O(‖C‖).

280 S. Porschen

2 Linear Time Algorithms Solving Optimum
Variable-Weight XSAT and NAESAT for 2CNF

Clearly, MINV-SAT, in it decision version, is NP-hard because it is a general-
ization of SAT. But MINV-SAT remains NP-complete even when restricted to
monotone instances C ∈ CNF+ and a constant weight function. Even for mono-
tone 2CNF formulas, MINV-SAT remains NP-complete, which immediately fol-
lows from a reduction of the VERTEX COVER problem which is NP-complete
(see e.g. [5]). The VERTEX COVER problem gets as input a graph G and
searches for a subset X of vertices of smallest cardinality such that every edge is
incident to at least one vertex in X. For the reduction consider G as the formula
graph of a formula C ∈ 2CNF and interpret X as the set of all variables as-
signed to 1. By exchanging the roles of the truth values 0,1, the same reduction
shows that also MAXV-SAT is NP-hard for the class 2CNF and constant weight
functions. Hence, both problems remain surely NP-hard for the general case of
arbitrary real weights, even if restricted to monotone formulas. In [9] an algo-
rithm is provided establishing that MINV-SAT (resp. MAXV-SAT) is exactly
solvable in time O(20.5248·|V (C)|, for input instances (C, w) where C ∈ 2CNF and
w : V (C) → R+ (resp. w : V (C) → R−).

However, the next result tells us that MINV-XSAT and MINV-NAESAT are
solvable in linear time, for the class 2CNF, and arbitrary weights assigned to the
variables.

Theorem 1. For C ∈ 2CNF and w : V (C) → R, MINV(MAXV)-XSAT resp.
MINV(MAXV)-NAESAT can be solved in linear time O(‖C‖). Moreover, if C
is connected, then there are at most two solutions in either case.

Proof. First observe that MINV-XSAT and MINV-NAESAT are essentially
the same for 2CNF formulas except for the different role played by unit clauses:
A formula C containing a unit clause {l} is not not-all-equal satisfiable whereas
the literal l must be assigned to 1 for exactly satisfying C. These decisions
are independent of weights and can be made in linear time. In what follows
we assume that each c ∈ C has length exactly 2. Exactly satisfying C is then
synonymous to not-all-equal satisfying C (it follows that the same is true when a
minimum weight solution is searched for). Hence it suffices to verify that MINV-
XSAT can be solved in linear time for such an input instance.

To that end we first compute the connected components of C via its incidence
graph IC . Clearly these components are pairwise variable disjoint and can be
checked for XSAT independently. The connected components of IC and hence
of C can be computed in linear time O(‖C‖).

Before continuing let us mention a simple fact concerning clauses of the form
{x, x}. Clearly, a variable x that occurs exclusively in such a clause, can be
assigned independently of the remaining variables, called relevant variables, as
to minimize (resp. maximize) the total weight.

Let C = {c1, . . . , ck} be a connected formula. We claim that if C ∈ XSAT
then there exist exactly two different exact models for C which can be computed

On Some Weighted Satisfiability and Graph Problems 281

in linear time O(‖C‖). Indeed, the necessity to exactly satisfy the first clause
c1 = {l1, l2} yields the constraint l1 = l2. Let C[l1 ← l2] denote the formula
obtained from C by substituting each occurence of l1, l1 by l2, l2 and deleting
duplicate clauses. Then we have C ∈ XSAT iff C[l1 ← l2] ∈ XSAT. Observe that,
since C is connected, l2 must be a relevant variable and hence is determined in a
subsequent step. Recursively, proceed in that way, by storing the corresponding
constraints until either a contradiction occurs, then C is not exact satisfiable,
or the empty formula occurs, then C ∈ XSAT. The constraints yield a chain of
equalities in which each relevant variable in C occurs exactly once either negated
or unnegated. That is, fixing one variable determines uniquely the truth values of
all other relevant variables in order to exactly satisfy the whole formula. Hence,
there are exactly two distinct models for each connected formula C. As an ex-
ample consider the connected formula C = {{x, y}, {z, x}, {y, z}, {u, v}, {z, u}}
The described procedure from left to right yields contradiction-free dependencies
as follows: z = u = v = y = x. The only two exact models are thus provided by
z = x = 0, u = v = y = 1 and z = x = 1, u = v = y = 0.

Computing an optimal exact model for each connected component Ci of an
input formula C runs in linear time O(‖Ci‖) (observe that the optimal solution
needs not to be unique, in general). With regard to the input formula C these are
disjoint partial exact truth assignments whose union yields the unique optimal
XSAT model of C. The time needed is O(

∑
i ‖Ci‖) = O(‖C‖) as has been

claimed. ��

3 Solving MINV-XSAT for CNF+(2) in Polynomial Time

Recall that for a formula C ∈ CNF(2) holds by definition that each clause c ∈ C
can have arbitrary length but each variable x ∈ V (C) occurs at most twice in
C. In the following we provide the algorithmic outline for solving MINV-XSAT
restricted monotone instances in CNF+(2) and arbitrary variable weights in
polynomial time. To that end we construct a transformation from MINV-XSAT
to the MINIMUM PERFECT MATCHING problem (MIN-PM) which as input
gets a graph and arbitrary real weights assigned to its edges. MIN-PM asks
for a perfect matching of minimum weight. Recall that a perfect matching is a
subset P of pairwise non-adjacent edges such that every vertex of G is incident
to (exactly) one edge in P . We construct a slight variant of the clause graph of
C, called the matching graph GM , which also incorporates variables that occur
only once in C. Such variables do not occur in any intersection of clauses, and
thus are not in correspondence to any edge of the clause graph. The matching
graph is constructed in two steps:

1) If there is no clause in C containing a unique variable, then GM := GC , i.e.,
the clause graph of C. Label each edge of GC by the variable with the smallest
weight occuring in the intersection of the corresponding clauses.
2) If there is any clause in C containing a unique variable, then define GM

as follows: Construct two copies of GC and join both copies by introducing an
additional edge between each two vertices in either copy that contain at least one

282 S. Porschen

c c

cx,u v,r

wt,z

v,rx,u

y

y

c

c

c
1

1 2

2

3

3

Fig. 1. Matching graph GM corresponding to C

unique variable (both vertices clearly correspond to one and the same clause).
Label each additional edge by the (unique) variable of the smallest weight in the
clause corresponding to its incident vertices.

Example: For the formula C = {c1, c2, c3}, where c1 = {t, u, x, y, z}, c2 =
{r, u, v, w, x}, c3 = {r, v, y} the corresponding matching graph GM is shown in
Figure 1, where the labels are due to the variables in the clause intersections.

It is not hard to see that a minimum weight perfect matching in G directly
corresponds to a minimum XSAT model of C, where the matching edges define
exactly the variables that must be assigned to 1. Clearly, for C ∈ CNF+(2)
the matching graph is constructable in time O(|C|2|V (C)|). Since each variable
that is not unique, occurs at most in two clauses it can be obtained only in the
intersection of two clauses. Hence, there can occur no contradiction by selecting
as edge label the minimum weight variable in each intersection. Because MIN-
PM is solvable in time O(|V |2|E|) for G = (V, E) and arbitrary real weights
assigned to the edges [2], we immediately obtain:

Theorem 2. For C ∈ CNF+(2) and w : V (C) → R, MINV-XSAT is solvable
in time O(|C|2|V (C)|). ��

4 Reduction from Monotone XSAT to MAX-IS

The problem MAXIMUM INDEPENDENT SET (MAX-IS) gets as input a triple
(G, w, k) where G = (V, E) is a simple graph, w : V (C) → R is a vertex weight
function and k ∈ R. It has to be decided, whether there is an independent set I
in G, i.e., a set of pairwise non-adjacent vertices, that has total weight at least k.
Observe that MAX-IS is NP-complete even when all weights are equal one which
follows from the VERTEX COVER problem, because a minimum cardinality
vertex cover in G is the complement of a maximum cardinality independent
set. In its search version MAX-IS searches for an independent set of maximum
weight. In this section we show that XSAT for arbitrary monotone CNF formulas
can be considered as a specific version of MAX-IS by presenting a polynomial
time reduction from XSAT to MAX-IS. This reduction will be useful to obtain

On Some Weighted Satisfiability and Graph Problems 283

a fast algorithm for #XSAT as provided in the next section. For C ∈ CNF+, let
G := GV (C) be the formula graph corresponding to C. Recall that each variable
x ∈ V (C) constitutes a vertex and that two vertices are joined by an edge if the
corresponding variables occur together in a clause. Since we have ony unnegated
literals, for x ∈ V (C), we have C(x) = {c ∈ C|x ∈ c} which is the subformula
of all clauses containing x. As weight function we define w : V (C) → N, with
w(x) = |C(x)|, hence the weights are determined by the structure of the formula.
As usual w extends to subsets X of V (C) by w(X) :=

∑
x∈X w(x). The next

lemma makes precise the reduction from monotone XSAT to MAX-IS:

Lemma 1. For C ∈ CNF+ we have C ∈ XSAT if and only if G contains an
independent set of weight |C|. Such a set then necessarily is a maximum weight
independent set in G.

Proof. Clearly, if X is an independent set in G then all corresponding variables
appear in different clauses, since by definition all variables in the same clause are
joined pairwise by edges. Thus, an independent set X of total weight |C| yields
an exact model for C when setting exactly the variables in X to true, because all
clauses are hitted then. To show the converse direction, assume that C ∈ XSAT
and let t be an XSAT model of C, with X := t−1(1). Then all variables in X
are contained in different clauses thus provide an independent set in G which
obviously has total weight |C|. ��

5 Counting All XSAT Models

In [4] Dahlöf and Jonsson stated an upper bound of O(20.81131n) for computing
the number of all XSAT models (#XSAT) in an instance C ∈ CNF where n
is the number of variables. That bound is based on an algorithm for counting
all maximum weight independent sets in a simple graph [4]. For convenience we
refer to the latter algorithm as to the D-J-Algorithm. In this section we show
that this bound can be reduced significantly, namely to O(20.4057n). The main
idea is as follows: If the given instance C ∈ CNF for #XSAT is monotone, we
proceed as in the last section and use the D-J-Algorithm [4] for counting all
maximum weight independent sets in the formula graph GV (C), which are all
independent sets of weight |C|. Due to Lemma 1 this number is equal that of
all XSAT models of C. If C is not monotone we transform it (in polynomial
time) into a monotone XSAT-equivalent formula C ′; thereby a unique model
multiplicator N is determined such that N times the number of solutions of C ′

equals the number of solutions of C. First, let us prove several lemmas that
provide all tools for transforming an arbitrary formula into a monotone one such
that the number of all models can be determined. Let X(C) denote the set of all
(total) truth assignments t : V (C) → {0, 1} that exactly satisfy C ∈ CNF. Since
for the empty formula ∅ holds V (∅) = ∅, we have |X(∅)| = 20 = 1.

If a clause contains more than one complemented pairs, then it can never be
exactly satisfied, hence the formula containing such a clause has 0 XSAT models.
However, clauses containing exactly one complemented pair can be removed from

284 S. Porschen

the formula by the so-called “complemented pair (cp)” rule as stated in the
following lemma:

Lemma 2. For C ∈ CNF, let c ∈ C contain exactly one complemented pair:
x, x ∈ c. Let φcp(C) be the formula obtained from C by removing c and assigning
all literals to 0 that occur in c′ := c − {x, x} and finally removing all duplicate
clauses. We have V (φcp(C)) = V (C)− V (c) and:
(i) |X(C)| = 2|X(φcp(C))| if x �∈ V (φcp(C)) and
|X(C)| = |X(φcp(C))| if x ∈ V (φcp(C)),

(ii) φcp(C) can be obtained from C in time O(‖C‖).
Proof. Obviously V (φcp(C)) = V (C) − V (c), because removing of duplicate
clauses can remove no other variable. For (i) first observe that surely C ∈ XSAT
iff φcp(C) ∈ XSAT, since c is always exactly satisfiable only through x and all
other literals in c are fixed to 0. Clearly, every model t ∈ X(C) fixes all variables
in V (C), thus defines by restriction to V (C)−V (c) a unique model t′ ∈ φcp(C).
On the other hand, if t′ ∈ φcp(C) and x �∈ V (φcp(C)) then there are exactly two
extensions t0, t1 of t′ to V (C) such that t0, t1 ∈ X(C). Both assign all variables in
V (c)−{x} to 0, but ti(x) = i, for i ∈ {0, 1}. In the remaining case x ∈ V (φcp(C))
the extension of t′ to V (C) is unique since the value of x is fixed also. Thus we
have (i). Part (ii) is obvious. ��

In the following, we call a formula cp-free if none of its clauses contains a
complemented pair of variables. The transformation in the next lemma is called
the “negation rule (¬)” rule:

Lemma 3. Let C ∈ CNF be a cp-free formula, let x ∈ V (C) be a variable that
exclusively occurs negated in C. Let φ¬(C) be the formula obtained from C by
replacing each occurence of x by x. Then:
(i) |X(C)| = |X(φ¬(C))|,
(ii) φ¬(C) can be computed from C in time O(‖C‖).
Proof. The proof is obvious. ��
Next we state a transformation called “simple resolution (sr)” rule which in a
slightly different form was used in [8]. Given a formula C and a literal l, we
denote by C(l) = {c ∈ C : l ∈ C} all clauses containing l.

Lemma 4. Let C ∈ CNF be complement pair free formula and let ci = {x} ∪
u, cj = {x} ∪ v ∈ C where x ∈ V (C) and u, v are literal sets. Let φsr(C) be the
formula obtained from C as follows:
(1) Replace every clause c ∈ C : x ∈ c by the clause c− {x} ∪ v,
(2) Replace every clause c ∈ C : x ∈ c by the clause c− {x} ∪ u,
(3) Set all literals in u ∩ v to 0,
(4) remove all duplicate clauses from the current clause set.
Then we have V (φsr(C)) = V (C)− {x} − V (u ∩ v), |φsr(C)| ≤ |C| − 1 and:
(i) |X(C)| = |X(φsr(C))|,
(ii) φsr(C) can be obtained from C in time O(‖C‖2).
Proof. Obviously x and V (u ∩ v) are removed from V (C) by φsr. This holds
due to the fact that neither u nor v can contain x or x, because C is assumed

On Some Weighted Satisfiability and Graph Problems 285

to be cp-free and clauses are assumed to be duplicate-free. On the other hand,
no other variable than x and those in V (u ∩ v) are removed by φsr since only
duplicate clauses are removed. Thus we have V (φsr(C)) = V (C)−{x}−V (u∩v).
Moreover, ci and cj are transformed by φsr into the same clause u⊕ v (denoting
the symmetric difference), hence because of (4) we have |φsr(C)| ≤ |C| − 1.

Addressing (i), we first show that C ∈ XSAT iff φsr(C) ∈ XSAT. To that end
consider the following decomposition of C: C = C(x) ∪ C(x) ∪ C(u ∩ v) ∪ CR

where C(u ∩ v) denotes all clauses in C containing a literal in u ∩ v, and CR is
the set of all remaining clauses in C that are not contained in any of the first
three sets. Because C is assumed to be cp-free we have C(x) ∩ C(x) = ∅ and
therefore the decomposition above is, in fact, a disjoint union. Now, assume that
C ∈ XSAT and let t ∈ X(C), then we claim that the truth assignment t′ defined
as t restricted to V (C) − {x} − V (u ∩ v) exactly solves φsr(C). To see this, let
c′ ∈ φsr(C) be an arbitrary clause, then there is a unique clause ĉ ∈ C such that
c′ = φsr(ĉ). Thus we have four cases. Case (a): ĉ ∈ CR, then t′ exactly satisfies
c′, since we have φsr(CR) = CR and t′ operates on CR the same as t.

Case (b): ĉ ∈ C(u ∩ v), then c′ is obtained from ĉ by setting all literals in it to
0 that also occur in u ∩ v. Cleary exactly one literal, say y in ĉ is set to 1 by t
but that literal cannot be contained in u ∩ v because otherwise ci or cj has two
different literals set to 1, namely y and x or x. Thus t(y) = t′(y) = 1 thus t′

exactly satisfies c′.
Case (c): ĉ ∈ C(x) then because of (3) c′ := (ĉ − {x}) ⊕ v. Clearly, ĉ is either
exactly satisfied because of t(x) = 1 in which case for exactly one literal, say
y ∈ v must also hold t(y) = 1 because otherwise cj ∈ C would not be satisfied
by t. Because y �∈ ĉ, we have that in this case t′(y) = 1 and therefore t′ exactly
satisfies c′. Or ĉ is exactly satisfied by t(z) = 1 for exactly one literal z ∈ ĉ
different from x, then especially t(x) = 0. Observe that z �∈ v because otherwise
cj contains two literals set to 1 by t, namely x, z.
Case (d) proceeds completely analogously by exchanging the roles of x ↔ x, v ↔
u, and cj ↔ ci. Conversely, if φsr(C) ∈ XSAT and t′ ∈ X(φsr(C)) then t ∈ X(C)
is uniquely defined by setting x accordingly in order to exactly satisfy ci and cj

simultaneously. This is possible since all literals in u ∩ v are already fixed to 0.

Hence, we have proven that C ∈ XSAT if and only if φsr(C). Assume that C ∈
XSAT and let t ∈ X(C) then from the proof above follows that t′ ∈ X(φsr(C)) is
uniquely determined by t. Conversely, if φsr(C) ∈ XSAT and t′ ∈ X(φsr(C)) then
also from the proof above follows that t ∈ X(C) is uniquely determined, since all
variables in V (C)− V (φsr(C)) are fixed by the transformation. In summary we
have constructed a one-one correspondence between X(C) and X(φsr(C)), hence
part (i) is implied. Part (ii) is obvious. ��

Now we are ready to present Procedure Monotonize which gets as input a
non-monotone CNF C formula and calls itself recursively until C is monotone
thereby it computes the model multiplicator for C:

286 S. Porschen

Procedure Monotonize(C, N)
Input: C ∈ CNF
Output: monotone formula C; model multiplicator N
begin
(1) N ← 1
(2) if ∅ ∈ C then return N ← 0
(3) if ∃c ∈ C containing ≥ 2 complemented pairs then return N ← 0
(4) if ∃c ∈ C containing 1 complemented pair {x, x}} then (∗ cp-rule ∗)

C ← φcp(C)
if x �∈ V (C) then N ← 2 ·N
Monotonize(C, N)

(5) if ∃x ∈ V (C) occuring only negated in C then (∗ ¬-rule ∗)
C ← φ¬(C); Monotonize(C, N)

(6) if ∃ci, cj ∈ C, x ∈ V (C) : x ∈ ci, x ∈ cj then (∗ sr-rule ∗)
C ← φsr(C); Monotonize(C, N)

(7) return C, N
end

Theorem 3. For C ∈ CNF, Procedure Monotonize, in time O(|C|‖C‖2), cor-
rectly computes a monotone formula C ′ ∈ CNF and a multiplicator N such that
|X(C)| = N · |X(C ′)|.

Proof. Correctness of steps (1) to (3) is obvious. Correctness of steps (4) to (6)
follows by Lemmas 2 to 4, and by the fact that the current formula is cp-free
when step (5) is executed first. Thus the current formula C returned in step (7)
is monotone and the returned multiplicator value N is correct. Addressing the
running time observe that each statement of Procedure Monotonize is executable
at worst in quadratic time in the length of the formula. In each of the steps
(4), (6), and (7) at least one clause is removed from the current formula. Step
(5) is called at most |V (C)| times. Thus there are at most O(|V (C)| + |C|) =
O(‖C‖) recursive calls of the procedure. Thus we have a polynomial running
time bounded by O(‖C‖3). ��
Algorithm #XSAT(C, |X(C)|)
Input: C ∈ CNF
Output: number of all XSAT-models |X(C)| of C
begin
N ← 1
if C is not monotone then
(1) compute Monotonize(C, N)
(2) if N = 0 then return |X(C)| = 0
(3) if C = ∅ then return |X(C)| ← N
(4) compute weighted formula graph (GV (C), w) with ∀x ∈ V (C) : w(x) = |C(x)|
(5) by the D-J-Algorithm compute the number M of all independent sets of

weight |C| in (GV (C), w)
(6) return |X(C)| ← N ·M
end

On Some Weighted Satisfiability and Graph Problems 287

Theorem 4. Algorithm #XSAT correctly computes the number of all XSAT
models of an arbitrary instance C ∈ CNF in time O(20.40567·|V (C)|).

Proof. Theorem 3 establishes the correctness of statement (1). Clearly, if the
multiplicator is 0 then C �∈ XSAT and the number of models is 0, hence (2) is
correct. Correctness of (3) follows because the empty formula has only 1 XSAT
model. In (4) the formula graph and the variable weights are computed for the
current formula C. Hence in (5) the number of all maximum weight independent
sets and therefore the number of all XSAT models is computed for the current
formula. Correctness of step (5) follows by [4], Theorem 3.1. The running time
of step (5) is, according to [4], Theorem 4.1, bounded by O(1.3247|V (C)|) =
O(20.40567·|V (C)|), and clearly dominates all other steps of the algorithm. ��

References

1. A. V. Aho, M. Ganapathi, and S. W. Tjiang, Code Generation Using Tree Match-
ing and Dynamic Programming, ACM Trans. Programming Languages and Sys-
tems, 11 (1989) 491-516.

2. D. Applegate and W. Cook, Solving large-scale matching problems, in: D. S.
Johnson, C. C. McGeoch (Eds.), Algorithms for Network Flows and Matching
Theory, American Mathematical Society, pp. 557-576, 1993.

3. S. A. Cook, The Complexity of Theorem Proving Procedures, in: Proceedings of
the 3rd ACM symposium on Theory of Computing, pp. 151-158, 1971.

4. V. Dahllöf, P. Jonsson, An Algorithm for Counting Maximum Weighted Indepen-
dent Sets and its Applications, in: Proceedings of the 13th ACM-SIAM sympo-
sium on Discrete Algorithms, pp. 292-298, 2002.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

6. S. Liao, K. Kreutzer, S. W. Tjiang, and S. Devadas, A New Viewpoint on Code
Generation for Directed Acyclic Graphs, ACM Trans. Design Automation of Elec-
tronic Systems, 3 (1998) 51-75.

7. D. Le Berre and L. Simon, The Essentials of the SAT 2003 Competition, in: E.
Giunchiglia, A. Tacchella (Eds.), Proceedings of the 6th International Conference
on Theory and Applications of Satisfiability Testing (SAT’03), Lecture Notes
in Computer Science, Vol. 2919, pp. 172-187, Springer-Verlag, Berlin, 2004; and
references therein.

8. B. Monien, E. Speckenmeyer and O. Vornberger, Upper Bounds for Covering
Problems, Methods of Operations Research 43 (1981) 419-431.

9. S. Porschen and E. Speckenmeyer, Satisfiability Problems for Mixed Horn For-
mulas, in: H. Kleine Büning, X. Zhao, (Eds.), Proceedings of the Guangzhou
Symposium on Satisfiability and its Applications, 2004, Guangzhou, China 2004,
pp. 106–113.

10. T. J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the
10th ACM Symposium on Theory of Computing, pp. 216-226, 1978.

On the Security and Composability of the
One Time Pad

Dominik Raub, Rainer Steinwandt�, and Jörn Müller-Quade��

IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth
Fakultät für Informatik, Universität Karlsruhe (TH),

Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract. Motivated by a potentially flawed deployment of the one
time pad in a recent quantum cryptographic application securing a bank
transfer [1], we show how to implement a statistically secure system for
message passing, that is, a channel with negligible failure rate secure
against unbounded adversaries, using a one time pad based cryptosys-
tem. We prove the security of our system in the framework put forward
by Backes, Pfitzmann, and Waidner [2].

1 Introduction

It is well known that the one time pad (OTP) is perfectly concealing. There-
fore OTP based encryption is the obvious choice when dealing with unbounded
adversaries. However, the OTP on its own does not suffice to implement secure
message passing (SMP), as it is “malleable” in the sense that plaintext bits can
be flipped by flipping the corresponding ciphertext bit.

Recently, a bank transfer of EUR 3000 was secured by quantum cryptogra-
phy [1], i. e., a quantum key agreement scheme was used to establish a shared
secret and a one time pad encrypted money transfer form was sent. However,
in the experiment the integrity of the message was not secured which can have
devastating consequences (cf. [3–Section 1.4]): Say, the bank transfer form itself
contains no authentication mechanism and there is a known position where the
amount of money is specified in digits. Then an adversary can undetectedly flip
bits at these positions, changing the specified amount of money. Hence the secu-
rity of a bank transfer as described in [1] cannot be concluded from the security
of the (authenticated!) quantum key agreement protocol alone.

Therefore, to implement SMP, the OTP needs to be combined with some kind
of authentication scheme, to ensure non-malleability and of course authenticity.
In this work we give a SMP protocol that achieves statistical security and prove
its security against unbounded adversaries in the formal framework developed by
Backes, Pfitzmann, and Waidner [2] (one could also think of applying Canetti’s
framework [4]). For being able to deal with an unbounded adversary, we will use
an authentication scheme described by Stinson [5–Chapter 10.3], but note that

� work partially supported by DFG-project ANTI-BQP.
�� work partially funded by the project ProSecCo of the IST-FET programme of the

EC, and performed in cooperation with SECOQC.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 288–297, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Security and Composability of the One Time Pad 289

any other statistically secure and composable authentication scheme serves our
purpose as well. Secure message passing in the presence of a computationally
bounded adversary is treated by Canetti and Krawczyk in [6].

There are a number of other issues with the OTP, e. g., since the OTP is
a stream cipher, synchronization needs to be maintained. If the adversary sup-
presses a message, the subsequent messages should still be readable. Therefore
the current position in the encryption key needs to be transmitted (unencrypted
but authenticated) along with the ciphertext. Finally, for reasons of applicability
we choose the alphabet Σ = F2 for all subsequent discussions.

2 The Ideal Model

In a first step we need to define precisely, what secure message passing is sup-
posed to mean. To this end we specify an ideal functionality TH, that obviously
ensures the secrecy and authenticity of our messages, passes all information
leaked through necessary imperfections of the SMP system to the adversary and
offers the adversary a well defined interface to perform all actions the message
passing system cannot prevent (i.e. reordering or suppressing messages). So it
becomes obvious what the system does not conceal and not prevent. In defining
the ideal model for SMP, we largely follow [7]. Since the handling of multiple
sessions can be derived from the handling of individual sessions by means of
the composition theorem, we can restrict ourselves to considering only a single
session as is done in [6]. We do not need session identifiers, since multiple ses-
sions can be distinguished by different port names. Also, differing from [7], we
will for now only investigate unidirectional message transmission, since arbitrary
networks can be composed from secure unidirectional point to point connections
(this is analogous to [6]). There is a further reason, why it is sensible to first
restrict oneself to a unidirectional connection:

Caveat 1. As we investigate stream ciphers (more specifically the one time pad)
in an asynchronous framework, any two participants need a separate key for each
unidirectional connection.

Rational. If two parties were to use the same key string for a bidirectional
connection it would be hard to ensure, that a specific subsequence of the key is
not used twice (e.g. simultaneously by each partner sending out some message).
But this would undermine the security of the protocol, since by calculating the
sum of two such ciphertexts the key can be cancelled. The resulting sum of two
plaintexts may be deciphered using statistical methods. �

Now let s ∈ N>0 and L be a non-zero polynomial with coefficients in N,
where s denotes the maximum number of messages the sender may send, and L
the maximum message length as a function of the security parameter k.

All machines given throughout this work will be initialized to a state corre-
sponding to the security parameter k in accordance with the framework [7] and
the adversary is always the master scheduler, all buffers not explicitly scheduled
by another machine are scheduled by the adversary.

290 D. Raub, R. Steinwandt, and J. Müller-Quade

Fig. 1. Ideal Model: SMP

Since we only admit two participants, the sender and the receiver, a single
dishonest party can, due to the nature of the message transmission task, already
disclose all relevant information to the adversary A. Hence we require nothing in
case one (or both) parties are corrupted and turn control over to the adversary—
all messages are passed directly to the adversary who may also send arbitrary
messages to the honest users (“environment”) H. Therefore we only need to dis-
cuss the case where the set of honest participants H is the set of all participants
M, i.e. H =M = {1, 2}, where 1 is the sender and 2 the receiver. We now define
the ideal system for secure message transmission as Syssecmsg,ideal

s,L = {({TH}, S)}
where ports(TH) = {inu?, outu!, out�u!|u ∈ H} ∪ {insim?, outsim!, outsim

�!} and the
specified ports are given by Sc := {inu!, outu?|u ∈ H}. TH maintains data struc-
tures init1, init2, key1, key2 ∈ {0, 1}, sc ∈ {0, . . . , s} initialized to 0, and a list
deliver initially empty. initu stores if user u has initiated key exchange, keyu

stores if user u would have received his set of keys (both encryption and au-
thentication keys) in the real model, deliver holds the messages due for delivery
until the adversary schedules them. The state-transition function of TH is given
by the rules below. Inputs not treated explicitly are ignored. If an input triggers
a non-empty output, we say the machine accepts it.

On the Security and Composability of the One Time Pad 291

3 The Hybrid Model

We now define a hybrid model that uses an actual encryption algorithm, but still
relies on an ideal authentication subsystem to deliver messages. We will prove this
hybrid model to be perfectly as secure as the ideal model in the black box simu-
latability sense [7]. As encryption primitive we will use the one time pad, but we
will attempt to give a general formulation, so that the one time pad can easily be
replaced with a different stream cipher. Of course, no more than computational
security can be expected then.

The hybrid real model is sketched in Figure 2. The two machines M1,enc,
M2,enc handle encryption and decryption respectively. Between the two machines
we still have an authenticated channel, implemented by the ideal authentication
functionality Fauth,ideal

s,Lauth
. The maximal message length Lauth for the authentication

subsystem is given as polynomial over N in k defined as Lauth(k) := L(k)+s ·k ≥
L(k) + �log2(s · k)	. The authentication subsystem has to handle messages that
are �log2(s · k)	 longer than the messages handled by the encryption machines,
because the current position within the one time pad key used for encryption
has to be authenticated with the original message. With H = {1, 2} as above,
the hybrid system is formally given as

Syssecmsg,hybrid
s,L = {({Mu,enc, F

auth,ideal
s,Lauth

, FKEenc|u ∈ H}, S) where
ports(Mu,enc) = {inu?, outu!, out�u!, inu,auth!, outu,auth?, in�

u,auth!, (1)

inu,FKEenc !, in
�
u,FKEenc

!, outu,FKEenc?} where u ∈ H
ports(Fauth,ideal

s,Lauth
) = {inu,auth?, outu,auth!, out�u,auth!|u ∈ H} (2)

∪ {insim,auth?, outsim,auth!, outsim,auth
�!}

ports(FKEenc) = {inu,FKEenc?, outu,FKEenc !, out�u,FKEenc
!,

insim,FKEenc?, outsim,FKEenc !, out�sim,FKEenc
!|u ∈ H} (3)

and the specified ports are given by Sc := {inu!, outu?|u ∈ H}. The machines in
Syssecmsg,hybrid

s,L maintain the following data structures (where u ∈ H):
FKEenc: initu, distributedu ∈ {0, 1}, key ∈ Σ∗

Mu,enc: init ∈ {0, 1}, enckey ∈ Σ∗, keypos ∈ {0, . . . , s · L(k)}, sc ∈ {0, . . . , s}
Fauth,ideal

s,Lauth
: init1, init2, key1, key2 ∈ {0, 1}, sc ∈ {0, . . . , s},

deliver ∈ ({0, . . . , s}, Σk)∗

Fig. 2. Hybrid Model: SMP

292 D. Raub, R. Steinwandt, and J. Müller-Quade

where all variables are initialized to 0, the empty list [] or the empty string ε
as applicable. When operating on strings in Σ∗ or lists, we let x[a : b] denote
the substring (in case x is a string) or sublist (in case x is a list) from (and
including) position a up to (but not including) position b. The state-transition
functions of the machines are given by the rules in the box below. Inputs not
treated explicitly are ignored. If an input triggers a non-empty output, we say
the machine accepts it. (Note that the rules are ordered by the machines they
belong to and may be invoked by rules listed further down.)

On the Security and Composability of the One Time Pad 293

Caveat 2. The position in the key sequence must be included with the message
unencrypted. It should be authenticated with the message, unless tampering with
the key sequence position ensures (with overwhelming probability) that authenti-
cation will fail.

Rational. If the key sequence position is not included, the adversary suppressing
one single message results in loss of synchronization. Thus decryption will fail for
all subsequent messages. If the key position is not authenticated, the adversary
may modify it without being noticed. If the authentication is then not guaranteed
to fail, the receiver will be under the impression he is receiving nonsensical
messages from the sender. �

The next theorem (proven in the full version [8]) states that the ideal model
(cf. Figure 1) and the hybrid real model (cf. Figure 2) are black box perfectly
indistinguishable according to the definition set forth in [7]. That implies that
the hybrid real model is perfectly at least as secure as the ideal model.

Theorem 1. The hybrid real system Syssecmsg,hybrid
s,L as in Figure 2 is black box

perfectly at least as secure as the ideal system Syssecmsg,ideal
s,L as in Figure 1:

Syssecmsg,hybrid
s,L ≥f,perf

sec Syssecmsg,ideal
s,L where the valid mapping f between the sys-

tems is obvious from the machine names.

4 The Real Model

The real model defined in this section describes the actual usable protocol for sta-
tistically secure message passing. There are two machines M1 and M2 for sender
and receiver respectively. Each machine Mu decomposes into two submachines
Mu,enc and Mu,auth that handle encryption and authentication. The machines
Mu,auth and FKEauth constitute the real authentication subsystem Sysauth,real

s,L that
replaces the ideal authentication subsystem Sysauth,ideal

s,L . As such the real system
is mostly identical to the hybrid-real model, only replacing the ideal authenti-
cation system with the real one, and thus allowing for a proof of security by
composition. The real authentication system is based on a statistically secure
authentication procedure described in [5–Chapter 10.3]. It views the message
m as number in Fp and uses an affine authentication function, computing the

294 D. Raub, R. Steinwandt, and J. Müller-Quade

authentication tag as t(m, k1, k2) := (m ·k1+k2) mod p where k1, k2 ∈ Fp is the
current pair of keys. A more detailed discussion of this scheme and its security
will be given in the next section. With H = {1, 2} the real system is formally
given as Syssecmsg,real

s,L = {({Mu,enc, Mu,auth, FKEauth, FKEenc|u ∈ H}, S)} where

ports(Mu,enc) = {inu?, outu!, out�u!, inu,auth!, outu,auth?, in�
u,auth!, (4)

inu,FKEenc !, in
�
u,FKEenc

!, outu,FKEenc?} where u ∈ H
ports(M1,auth) = {in1,auth?, out1,auth!, out�1,auth!, netout!, (5)

in1,FKEauth !, in
�
1,FKEauth

!, out1,FKEauth?}
ports(M2,auth) = {in2,auth?, out2,auth!, out�2,auth!, netin?, (6)

in2,FKEauth !, in
�
2,FKEauth

!, out2,FKEauth?}
ports(FKEauth) = {inu,FKEauth?, outu,FKEauth !, out�u,FKEauth

!, (7)

insim,FKEauth?, outsim,FKEauth !, out�sim,FKEauth
!|u ∈ H}

ports(FKEenc) = {inu,FKEenc?, outu,FKEenc !, out�u,FKEenc
!, (8)

insim,FKEenc?, outsim,FKEenc !, out�sim,FKEenc
!|u ∈ H}

and the specified ports are given by Sc := {inu!, outu?|u ∈ H}. The machines
in Syssecmsg,real

s,L maintain the following data structures (where u ∈ H and v ∈
{enc, auth}):
FKEenc: initu, distributedu ∈ {0, 1}, key ∈ Σ∗

FKEauth: initu, distributedu ∈ {0, 1}, key ∈ Σ∗, p ∈ {0, . . . , 2k+1 − 1}
Mu,enc: init ∈ {0, 1}, enckey ∈ Σ∗, keypos ∈ {0, . . . , s · L(k)}, sc ∈ {0, . . . , s}
Mu,auth: initauth ∈ {0, 1}, authkey ∈ Σ∗, sc ∈ {0, . . . , s}, p ∈ {0, . . . , 2k+1− 1}
where all variables are initialized to 0, [], ε as applicable. Again, all differences to
the hybrid real model are confined to the authentication subsystem. The state-
transition functions of all machines are given as in the hybrid real model, except
for the machines that belong to the real authentication subsystem. For those
the state transition functions are described below. Again, inputs not treated
explicitly are ignored.

On the Security and Composability of the One Time Pad 295

Caveat 3. Our authentication scheme does not protect leading zeros, since m
and 0||m correspond to the same number in Fp. Therefore, we make sure, that
every message starts with a one.

Caveat 4. We need to include the message sequence number with the authen-
ticated message, since loss of synchronization would otherwise prevent us from
authenticating messages after the adversary has suppressed one. The message
sequence number need not be authenticated, since modification of the sequence
number will just lead to failing authentication.

It remains to show that Syssecmsg,real
s,L is black box statistically as secure as

Syssecmsg,hybrid
s,L . This is done by composition. We will prove that the real authen-

tication subsystem Sysauth,real
s,L is black box statistically as secure as the ideal au-

thentication subsystem Sysauth,ideal
s,L utilized in Syssecmsg,real

s,L . The statistical black
box security of Syssecmsg,ideal

s,L then follows from the perfect black box security of
Syssecmsg,hybrid

s,L using the composition theorem from [7].

296 D. Raub, R. Steinwandt, and J. Müller-Quade

5 Security of the Authentication Subsystem

The ideal authentication subsystem Sysauth,ideal
s,Lauth

= {({Fauth,ideal
s,Lauth

}, S)}, utilizing
the ideal authentication functionality (structure) F auth,ideal

s,Lauth
= ({Fauth,ideal

s,Lauth
}, S) is

depicted in Figure 3. The real authentication subsystem

Sysauth,real
s,Lauth

= {({Mu,auth, FKEauth|u ∈ H}, S)}

utilizing the real authentication functionality F auth,real
s,Lauth

= ({Mu,auth, FKEauth|u ∈
H}, S) is shown in Figure 4. All machine definitions and the trust model are as
given above and the specified ports are given by Sc := {inu,auth!, outu,auth?|u ∈ H}
where of course H = {1, 2}. As shown in the full version [8] we have

Theorem 2. The real authentication subsystem Sysauth,real
s,Lauth

as in Figure 4 is
black box statistically at least as secure as the ideal authentication subsystem
Sysauth,ideal

s,Lauth
as in Figure 3: Sysauth,real

s,Lauth
≥f,ExpSmall

sec Sysauth,ideal
s,Lauth

where the valid
mapping f between the systems is obvious from the machine names.

Caveat 5. The statistical security of the authentication scheme given here is
only guaranteed, as long as the message m interpreted as a natural number is
bounded by the modulus p.

Rational. If we allowed messages m ≥ p the adversary could easily introduce a
forged message (m + p) mod p. This would go unnoticed, as t(m + p, k1, k2) =
((m + p)k1 + k2) mod p = (mk1 + k2) mod p = t(m, k1, k2) �

Our system takes this into account by limiting the message length to at most
Lauth(k) + 1 bits (including the leading one) and choosing p as Lauth(k) + 2 bit
prime (or larger).

The composition theorem of [7–Theorem 4.1] is applicable to the systems
Syssecmsg,hybrid

s,L and Syssecmsg,real
s,L with the respective subsystems Sysauth,ideal

s,Lauth
and

Sysauth,real
s,Lauth

, since each system is composed of only one single structure and
because the consistency condition on the ports is clearly fulfilled. Thus we have

Theorem 3. The real system for secure message passing as given above is black
box statist. as secure as the ideal system: Syssecmsg,real

s,L ≥f,ExpSmall
sec Syssecmsg,ideal

s,L

where the valid mapping f between the systems is obvious.

Fig. 3. Ideal Model: Authentication Fig. 4. Real Model: Authentication

On the Security and Composability of the One Time Pad 297

Note that the theorem above still holds if we replace the authentication system
with any other statistically secure and composable authentication system.

6 Conclusion

We have seen, that it is feasible, but not trivial, to use the one time pad to con-
struct a statistically secure message passing system. In particular we note, that
it is impossible to obtain a perfectly secure system (i.e. perfectly indistinguish-
able from the ideal system), because authentication can at best be statistically
secure. The proof we presented is modular in the sense that it admits any choice
of statistically secure authentication system. As indicated in Appendix A of the
full version [8] it is also easily extensible to computationally secure ciphers and
authentication systems, thus providing a framework for statements about stream
ciphers in the model of [2].

Acknowledgements. We thank Dennis Hofheinz and Dominique Unruh for
helpful comments and discussions.

References

1. Poppe, A., Fedrizzi, A., Loruenser, T., Maurhardt, O., Ursin, R., Boehm, H.R.,
Peev, M., Suda, M., Kurtsiefer, C., Weinfurter, H., Jennewein, T., Zeilinger, A.:
Practical Quantum Key Distribution with Polarization-Entangled Photons. lanl.-
arXiv.org e-Print archive, quant-ph/0404115 (2004)

2. Backes, M., Pfitzmann, B., Waidner, M.: Secure Asynchronous Reactive Sys-
tems. Cryptology ePrint Archive, Report 2004/082 (2004) http://eprint.iacr.
org/2004/082/.

3. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. In-
formation Security and Cryptography. Springer (2003)

4. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, IEEE Computer Society (2001) Full version available at Cryptology ePrint
Archive, Report 2000/067; http://eprint.iacr.org/2000/067/.

5. Stinson, D.R.: Cryptography – Theory and Practice. CRC Press, Boca Raton, FL,
USA (1995)

6. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange
and Secure Channels. Cryptology ePrint Archive, Report 2002/059 (2002) http:
//eprint.iacr.org/2002/059/. Extended version of [9].

7. Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its
Application to Secure Message Transmission. Cryptology ePrint Archive, Report
2000/066 (2000) http://eprint.iacr.org/2000/066/.

8. Raub, D., Steinwandt, R., Müller-Quade, J.: On the Security and Composability
of the One Time Pad. Cryptology ePrint Archive, Report 2004/113 (2004) http:
//eprint.iacr.org/2004/113/.

9. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In Knudsen, L., ed.: Advances in Cryptology – EUROCRYPY
2002. Volume 2332 of Lecture Notes in Computer Science., Springer (2002) 337–351

Lower Bounds on the OBDD Size of Graphs of
Some Popular Functions�

Daniel Sawitzki��

University of Dortmund, Computer Science 2,
D-44221 Dortmund, Germany

daniel.sawitzki@cs.uni-dortmund.de

Abstract. Ordered binary decision diagrams (OBDDs) are a data struc-
ture for Boolean functions which supports many useful operations. It
finds many applications in logic design, CAD, model checking, and sym-
bolic graph algorithms. Nevertheless, many simple functions are known
to have exponential OBDD size w. r. t. their number of variables. In or-
der to investigate the limits of symbolic graph algorithms which work on
OBDD-represented graph instances, it is useful to have simply-structured
graphs whose OBDD representation has exponential size. Therefore, we
consider fundamental arithmetic and storage access functions with ex-
ponential OBDD size and transfer these results to the graphs of these
functions. Concretely, lower bounds for the graphs of integer multiplica-
tion, indirect storage access, and the hidden weighted bit function are
presented. Finally, an exemplary application of the result for multipli-
cation to the analysis of a symbolic all-pairs shortest-paths algorithm is
sketched.

1 Introduction

The representation of Boolean functions by branching programs has been ex-
tensively studied both in complexity theory and logic design and verification.
Lower bounds on the branching program size imply lower bounds on the space
complexity of computations. Moreover, tradeoff results for the depth and size
of branching programs imply time–space tradeoffs on sequential machines (see,
e. g., [1]). Therefore, there are many lower bound results on the size of restricted
types of branching programs for at best simple and important functions like
arithmetic functions and storage access functions.

On the other hand, in the practical area of logic design and verification,
there is the need of succinct representations for Boolean functions which allow
efficient algorithms for functional manipulation. In this context, oblivious read-
once branching programs [2, 3, 4] (also called ordered binary decision diagrams

� An extended version of this paper is available via http://ls2-www.cs.uni-
dortmund.de/ sawitzki/LBotOSoGoSPF Extended.pdf.

�� Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Research
Cluster “Algorithms on Large and Complex Networks” (1126).

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 298–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

˜

Lower Bounds on the OBDD Size of Graphs of Some Popular Functions 299

(OBDDs)) have proved to be very useful for the implicit representation of state
transition graphs and their symbolic manipulation. The research in this practical
area is limited to some application-related problems and experimental analyses.

Recently, a new research branch has emerged which is concerned with the the-
oretical design and analysis of symbolic algorithms for classical graph problems
on OBDD-represented graph instances. The input of these specialized heuristic
algorithms consists of one or more OBDDs which represent the input graph in-
stance in an implicit way avoiding an explicit enumeration of nodes and edges.
For example, a directed graph G = (V, E) with V = {v0, . . . , v2n−1} can be
represented by its characteristic Boolean function χG : {0, 1}2n → {0, 1} with
χG(x, y) = 1 :⇔

(
v|x|, v|y|

)
∈ E for the binary values |x|, |y| of binary node

number encodings x, y ∈ {0, 1}n.
Symbolic algorithms have to solve problems on G by efficient functional oper-

ations offered by the OBDD data structure. Until now, symbolic methods for flow
maximization [5, 6], topological sorting [7], shortest paths computation [8, 9], and
component analysis [10, 11] have been presented. Most papers justify the new
OBDD-based approaches by an analysis of the number of executed OBDD oper-
ations [12, 10, 11, 13] or by experimental results [5, 14, 15, 16, 17]. Newer research
also tries to analyze the over-all runtime of symbolic methods, which includes the
analysis of all OBDD sizes occurring during the algorithm. In general, even ba-
sic problems like reachability analysis are PSPACE-hard on OBDD-represented
graphs [18]. So analyses must investigate input instances with special properties
that enable sublinear runtimes w. r. t. the explicit graph size.

OBDDs during the run of a symbolic graph algorithm represent intermediate
results and, therefore, typically not well-structured functions. In order to prove
that an OBDD-based algorithm needs exponential time w. r. t. input and output
size we have to estimate the size of these intermediate OBDDs. Although lower
bound techniques for OBDDs are well-known [19, 4, 20], it is not easy to apply
them in such situations. Intermediate OBDDs often check whether some condi-
tion is fulfilled. We formalize this type of function by defining the symbolic graph
function of a vector of Boolean functions. In the following, the class of Boolean
functions f : {0, 1}n → {0, 1}, n ∈ IN, is denoted by Bn.

Definition 1. Let f = (f0, . . . , fm−1) be a vector of m Boolean functions fi ∈
Bn for n, m ∈ IN, 0 ≤ i ≤ m− 1. The function f-GRAPH ∈ Bn+m defined by

f-GRAPH(x0, . . . , xn−1, y0, . . . , ym−1) =
m−1∧
i=0

[fi(x) = yi]

is called the symbolic graph of f .

The contribution of this paper is to transfer existing lower bounds for some
fundamental functions to their corresponding symbolic graphs. These can then be
applied in the construction of worst-case inputs for symbolic algorithms yielding
exponential running times.

Section 2 introduces general branching programs for Boolean functions as
well as two restricted types that are of particular interest in this paper. In

300 D. Sawitzki

order to disprove the reasonable assumption that lower bounds for single output
bits directly carry over to the symbolic graph of a vector of functions, Sect. 3
investigates the OBDD size of a specially constructed storage access function.

After these preliminaries, Sect. 4 gives a survey of the results of this paper.
Exponential lower bounds on the OBDD size of the graphs of integer multiplica-
tion, indirect storage access, and the hidden weighted bit function are presented.
We also mention an implication on squaring. Section 5 contains the proof of the
result for multiplication. Then, Sect. 6 gives an exemplary application of the
result for multiplication to the analysis of a symbolic all-pairs shortest-paths
algorithm. Finally, Sect. 7 gives conclusions on the work and mentions open
problems.

2 Branching Programs for Boolean Functions

We denote the value of a binary string x = xn−1 . . . x0 ∈ {0, 1}n by |x| :=∑n−1
i=0 xi2i. On the other hand, we denote by (a) the binary string with value

a = |(a)| ∈ IN. Let X := {x0, . . . , xn−1} be a set of n Boolean variables.

Definition 2. Branching programs (BPs).

(a) A branching program P defined on the variable set X is a directed acyclic
graph with two kinds of nodes: Inner nodes and sink nodes. Each inner node
v is labeled with a variable xi =: label(v) ∈ X and left by two edges called 0-
and 1-edge. Each sink w is labeled with a Boolean constant c =: label(w) ∈
{0, 1} and has no outgoing edge. A special node s is marked as source node.

(b) Each assignment a = (a0, . . . , an−1) ∈ {0, 1}n to the variables in X defines
a unique computation path pa in P from s to a sink ta by leaving inner
nodes v labeled with xi = label(v) via their ai-edge. The function f ∈ Bn

represented by P is defined by f(a) := label(ta).
(c) The size size(P) of P is defined as its number of nodes.

We consider two restrictions of branching programs. Let π ∈ X∗ be a sequence
of variables from X.

Definition 3. A BP P is called π-oblivious if the sequence π(p) of variables
visited on any path p from the source node to a sink is a subsequence of π.

Definition 4. Oblivious read-once branching programs or ordered binary de-
cision diagrams (OBDDs).

(a) A π-oblivious BP P is called π-oblivious read-once branching program or
ordered binary decision diagram (π-OBDD) if π contains every variable from
X at most once. Then, π is called the variable order of P .

(b) The size of a minimal OBDD for a Boolean function f ∈ Bn is denoted by
OBDD(f). The size of a minimal π-OBDD for f is denoted by π-OBDD(f).

Every Boolean function f ∈ Bn has a unique minimal-size π-OBDD Pmin for
any variable order π. It is π-OBDD(f) ≤ (2 + o(1))2n/n.

The book of Wegener [4] gives a comprehensive survey on the topic of branch-
ing programs.

Lower Bounds on the OBDD Size of Graphs of Some Popular Functions 301

3 Lower Bounds Do Not Necessarily Carry over

Consider a vector f = (f0, . . . , fm−1) of m Boolean functions fi ∈ Bn, 0 ≤ i ≤
m− 1. One could conjecture that any lower bound on the OBDD size for some
fi is also a lower bound on the OBDD size for the symbolic graph f-GRAPH
of f . This pleasant property would made it obsolete to transfer lower bounds
for f to f-GRAPH explicitly. Unfortunately, this is not the case as the following
example shows.

We define generalized versions of the well-known functions DSA and ISA
which will be combined to construct the counterexample function vector FSA.

Definition 5. Let n = 2m, m ∈ IN, and i ∈ IN0. The shifted direct storage
access (SDSA) function SDSAn,i ∈ Bn+m is defined by

SDSAn,i(x, y) := xα(y) , where α(y) := (|y|+ i) mod n

and x ∈ {0, 1}n, y ∈ {0, 1}m.

That is, y controls which bit of x to output. Note that SDSAn,0 = DSAn (see [4–
Def. 4.3.1]).

Definition 6. Let n = 2m, m ∈ IN, and i ∈ IN0. The shifted indirect storage
access (SISA) function SISAn,i ∈ Bn+m is defined by

SISAn,i(x, y) := SDSAn,i(x,SDSAn,0(x, y), . . . ,SDSAn,m−1(x, y))

for x ∈ {0, 1}n, y ∈ {0, 1}m.

That is, we output the bit x(α(x,y)+i) mod n for the indirect address α(x, y) :=
|x|y| mod n . . . x(|y|+m−1) mod n|. Note that SISAn,0 = ISAn (see [4–Def. 2.2.5]).

We now combine SDSA and SISA to obtain a counterexample to the conjec-
ture stated above.

Definition 7. Let n = 2m and m ∈ IN. The full storage access (FSA) vector
FSAn = (FSAn,0, . . . ,FSAn,2m−1) of Boolean functions FSAn,i ∈ Bn+m, 0 ≤
i ≤ 2m− 1, is defined by

FSAn,i(x, y) :=
{

SDSAn,i(x, y) , 0 ≤ i ≤ m− 1
SISAn,i−m(x, y) , m ≤ i ≤ 2m− 1

for x ∈ {0, 1}n and y ∈ {0, 1}m.

The OBDD size of FSA is dominated by the hard function SISA.

Proposition 1. OBDD(FSAn,m) ≥ 2�n/ log n�−1.

Proof. The OBDD size of FSAn,m = SISAn,0 = ISAn is bounded below by
2�n/ log n�−1. (See [19] or [4–Theorem 4.3.3].) ��

Let FSA-GRAPHn be the symbolic graph of FSAn. While the inclusion
of SDSA into FSAn did not influence the lower bound on its OBDD size
(which is dominated by SISAn,0), it does simplify the OBDD representation
of FSA-GRAPHn:

302 D. Sawitzki

Proposition 2. OBDD(FSA-GRAPHn) = O
(
n3 · log n

)
.

Proof. Let each FSAn,i be defined on the variables x ∈ {0, 1}n and y ∈ {0, 1}m
for n = 2m. Moreover, let z ∈ {0, 1}2m be variables corresponding to the 2m
results of the functions FSAn,0, . . . ,FSAn,2m−1.

We choose π = (y0, . . . , ym−1, z0, . . . , z2m−1, x0, . . . , xn−1) as variable order.
The following π-OBDD P for FSA-GRAPHn has size O

(
n3 · log n

)
. On the first

3m layers, P consists of the complete binary tree on the variables y and z having
O
(
n3

)
nodes. At each of its n3 leaves vy,z, y and z are already fixed. It remains

to test if zi = SDSAn,i(x, y) for all 0 ≤ i ≤ m− 1 and zj = SISAn,j−m(x, y) for
all m ≤ j ≤ 2m−1. This is done by connecting a chain of at most 2m = O(log n)
nodes testing x-variables to each leaf vy,z implying size O

(
n3 · log n

)
for P . ��

Nevertheless, the next section will reveal that the exponential lower bounds
for three fundamental functions actually do carry over to the symbolic graph
scenario.

4 Survey of Results

In this section, we will present exponential lower bounds for symbolic graphs
of fundamental functions. Due to space limitations, only the result for integer
multiplication will be proved in Sect. 5. For the remaining proofs, the reader is
referred to the extended version of this paper. At first, we consider two arithmetic
functions.

4.1 Integer Multiplication and Squaring

Integer multiplication is one of the most important and difficult functions in
logic design. All data structures considered so far whose algorithmic properties
allow efficient circuit verification have exponential size for this hard function
(see, e. g., [4]). Only for the special case of Wallace-tree like multipliers, a poly-
nomial formal verification method using multiplicative binary moment diagrams
(*BMDs) has been presented by Keim et al. [21].

Definition 8. The integer multiplication (MUL) vector MULn =
(MULn,0, . . . ,MULn,2n−1) of Boolean functions MULn,i ∈ B2n, 0 ≤ i ≤ 2n− 1,
is defined by

MULn,i(x, y) = (|x| · |y|)i

for x, y ∈ {0, 1}n.

Especially, the OBDD size of MULn,n−1 is exponential w. r. t. n.

Theorem 1 (Woelfel [20]). OBDD(MULn,n−1) ≥ 2n/2/61.

On the other hand, multiplication is simply-structured, and its graph is easy to
encode into characteristic functions; Sect. 6 gives a corresponding application
example in symbolic algorithm analysis.

Lower Bounds on the OBDD Size of Graphs of Some Popular Functions 303

So let MUL-GRAPHn be the symbolic graph of MULn. Jukna [22] presents
an exponential lower bound on the size of nondeterministic read-k-times BPs for
the symbolic graph of a subvector (MULn,i)i∈I for indices I ⊂ {0, . . . , n − 1},
|I| ≤

√
n. Despite the title of Jukna’s work, this is neither a lower bound for the

graph of multiplication nor does it imply the following theorem and corollary.

Theorem 2. Any π-oblivious BP for MUL-GRAPHn whose variable sequence
π contains each variable at most k times has a size of at least 2n/((4k−1)(28k))−1.

An OBDD is an oblivious branching program reading each variable at most once.
Choosing k = 1 in Theorem 2, we obtain the following corollary.

Corollary 1. OBDD(MUL-GRAPHn) ≥ 2n/768−1.

Wegener [23] presents a read-once projection from integer multiplication to
squaring (SQU) which is so far the only way to prove exponential OBDD sizes
for the latter function. It can also be used to prove a lower bound for a restricted
version of the symbolic graph of SQU which verifies only a subset of the result
variables.

Corollary 2. Let n := 3m + 2 for m ∈ IN and SQU-GRAPH∗
n ∈

B8m+4 be defined by SQU-GRAPHn(x, y) :=
∧4m+2

i=2m+3

[
(|x|2)i = yi

]
. It is

OBDD(SQU-GRAPH∗
n) ≥ 2m/768−1 ≥ 2n/2304−2.

4.2 Storage Access Functions

In Sect. 3 Def. 6, we defined a generalized version called SISA of the well-known
ISA function. Breitbart, Hunt III, and Rosenkrantz [19] present an exponential
lower bound of 2�n/ log n�−1 for the OBDD size of ISA. Let SISA-GRAPHn,w ∈
Bn+m+w be the symbolic graph of the vector (SISAn,0, . . . ,SISAn,w−1) for n =
2m and 1 ≤ w ≤ n. Also SISA-GRAPHn,w has superpolynomial OBDD size for
w = o

(
n/ log2 n

)
. Due to the storage access character of SISA, this restriction is

not too prohibitive.

Theorem 3. OBDD(SISA-GRAPHn,w) ≥ 2n/(w·log n)−4.

We now consider a generalization of one further important and fundamental
storage access function.

Definition 9. Let n ∈ IN and i ∈ IN0. The shifted hidden weighted bit (SHWB)
function SHWBn,i ∈ Bn is defined by

SHWBn,i(x) := xα(x) , where α(x) :=

⎛
⎝ n∑

j=1

xj + i

⎞
⎠ mod n ,

x = (x1, . . . , xn) ∈ {0, 1}n, and x0 := 0.

That is, the number of ones in x plus the shifting parameter i determines the
address α(x) of the output bit xα(x). Note that SHWBn,0 = HWBn (see [4–
Def. 1.1.3]).

304 D. Sawitzki

Wegener [4–Theorem 4.10.2] presents an exponential lower bound of Ω
(
2n/5

)
on the OBDD size of the HWB function. Let SHWB-GRAPHn,w ∈ Bn+w be
the symbolic graph of the vector (SHWBn,0, . . . ,SHWBn,w−1) for n ∈ IN and
1 ≤ w ≤ n. As for SISA, a certain restriction on the number w of verified result
variables suffices to retain a superpolynomial lower bound.

Theorem 4. OBDD(SHWB-GRAPHn,w) = Ω
(
2n/(11w)

)
.

That is, the OBDD size of SHWB-GRAPHn,w is superpolynomial w. r. t. n if
w = o(n/ log n). Due to the storage access character of SHWB, this restriction
is not too prohibitive. Moreover, for n = 11m and m ∈ IN the lower bound is
2�n/(11w)�−1.

5 Proof of Theorem 2

We now prove Theorem 2 on the oblivious branching program size of
MUL-GRAPHn ∈ B4n. We use techniques from Gergov’s proof of Theorem 2
in [24].

Let the Boolean variables X := {x0, . . . , xn−1} and Y := {y0, . . . , yn−1}
denote the factor variables of MUL-GRAPHn and Z := {z0, . . . , z2n−1} its
result variables. That is, MUL-GRAPHn(x, y, z) = 1 ⇔ |x| · |y| = |z| for
x = xn−1 . . . x0, y = yn−1 . . . y0, and z = z2n−1 . . . z0. Let P be a π-oblivious BP
for MUL-GRAPHn whose variable sequence π contains each variable at most k
times.

First, we show a lower bound for a restricted symbolic graph of MULn. There-
fore, let ρ be some arbitrary sequence that contains each variable from X, Y ,
and Z exactly 2k =: � times and which has π as subsequence.

Definition 10. For two disjoint subsets S and T of X, an interval (ρi, . . . , ρj)
of ρ is called link if ρi+1, . . . , ρj−1 �∈ S ∪ T and either ρi ∈ T ∧ ρj ∈ S or
ρi ∈ S ∧ ρj ∈ T .

Lemma 1 (Alon and Maass [25]). Let M = (m1, . . . , mn�) be a sequence
in which each element mi ∈ X appears exactly � times. Suppose X1∪̇X2 is a
partition of X into two disjoint non-empty sets. Then, there are two subsets
S ⊆ X1 and T ⊆ X2 with |S| ≥ |X1|/22�−1, |T | ≥ |X2|/22�−1, and such that the
number of links between S and T in M is bounded above by 2 · �− 1.

Let X1 :=
{
x0, . . . , x�n/2�

}
and X2 :=

{
x�n/2�+1, . . . , xn−1

}
. Due to Lemma 1,

there are subsets S ⊆ X1 and T ⊆ X2 such that |S|, |T | ≥ (n/2 − 1)/22�−1 >
n/22� − 1 and there are no more than 2 · �− 1 links between S and T in ρ.

Since D := {(xi, xj) | xi ∈ S, xj ∈ T} contains at least
(
n/22� − 1

)2 pairs,
there is some index set I ⊆ {0, . . . , n− 1} and distance parameter d ∈
{1, . . . , n− 1} such that D′ := {(xi, xi+d) | i ∈ I} ⊆ D contains at least(
n/22� − 1

)2
/n ≥ n/24� − 1 pairs and max I < min I + d.

Lower Bounds on the OBDD Size of Graphs of Some Popular Functions 305

Let MUL-GRAPH∗
n :=

∧max I+d
i=min I+d [MULn,i(x, y) = zi]. Moreover, we con-

sider the subfunction fn of MUL-GRAPH∗
n defined by the following partial vari-

able assignments:

xi :=

⎧⎪⎪⎨
⎪⎪⎩

1 if
(i = min I) ∨ (i = min I + d)
∨ [(min I ≤ i ≤ max I) ∧ (i �∈ I)]

0 if
(i = max I) ∨ (i = max I + d)
∨ [((i < min I) ∨ (max I < i)) ∧ (i− d �∈ I)]

, (1)

yj :=
{

1 if (j = 0) ∨ (j = d)
0 else , (2)

zr :=
{

1 (r = max I + d)
0 else . (3)

Lemma 2. Any ρ-oblivious BP Q for fn has a size of at least 2n/((2�−1)(24�))−1.

Proof. In (1), we replace all variables between min I and max I by 1 which do
not take part in D′ as well as xmin I and xmin I+d. All x-variables lying outside
the interval [min I,max I] and not taking part in D′ are replaced by 0 as well as
xmax I and xmax I+d. In (2), the y-variables are chosen such that we sum up |x|
and |x| · 2d. The result is checked against |z| = 2max I+d (see (3)). (See Fig. 1.)

ab

ab

ab

0

0

0 00

0

00

0

0

x

x · 2d

z

+

=

(b + d) (a + d)

(a + d)(b + d)

(b + 2d) (a + 2d) (a + d)
(b + d)

Fig. 1. Illustration of the effect of variable replacements (1), (2), and (3) for a :=
min I and b := max I. MUL-GRAPH∗

n verifies only the result bits za+d, . . . , zb+d which
correspond to the sum of xb+d . . . xa+d and xb . . . xa

The function fn depends only on the x-variables being part of pairs in D′ \
{(xmin I , xmin I+d) , (xmax I , xmax I+d)}; it can be easily seen that it computes 1
if and only if xi �= xi+d for all i ∈ I \ {min I, max I} =: I ′. We now use methods
from communication complexity (see, e. g., [26]).

Claim. The deterministic communication complexity of fn w. r. t. the variable
set partition {xi | i ∈ I ′} ∪̇ {xi+d | i ∈ I ′} is at least |I ′| = |I| − 2.

306 D. Sawitzki

Let C be the 2|I′| × 2|I′| communication matrix of fn. It is C(i, j) = 1 iff (i)
is bit-inverse to (j). Hence, C is a permutation matrix and has rank 2|I′|. The
value log(rank(C)) = |I ′| is known to be a lower bound on the deterministic
communication complexity of a Boolean function.

Due to the construction of I ′, any ρ-oblivious BP Q for fn can be partitioned
into at most 2 · � parts S1, T1, . . . , S�, T� such that Si (Ti) contains only variables
from S (T). Therefore, Q yields a communication protocol of length (2 · �− 1) ·
log (width(Q)), where the width of Q is the maximum number of nodes labeled
with the same variable. (For the trivial construction see, e. g., [4–Sect. 7.5].) Due
to the lower bound of |I ′| = |I|−2 ≥ n/24�−3 on the communication complexity
of fn, Q must have at least width (and, therefore, size) 2n/((2�−1)(24�))−3/(2�−1) ≥
2n/((2�−1)(24�))−1. ��

We are now able to show the lower bound on the size of P .

Proof (Theorem 2). The lower bound of Lemma 2 does also hold for P because
we can construct an oblivious BP P ′ for fn from P without enlarging it: At first,
we apply variable replacements (1), (2), and (3). Then, we have to get rid of the
z-variables z0, . . . , zmin I+d−1, zmax I+d+1, . . . , z2n−1. In satisfying inputs of fn, it
holds zi = xi for i ∈ I and zj = xj−d for j − 2d ∈ I (see Fig. 1). In order to
force these variable pairs to be equal, we replace node labels zi, i ∈ I, by xi as
well as labels zj , j − 2d ∈ I, by xj−d. The remaining z-variables are replaced by
0. The resulting BP P ′ represents fn.

We added no more than k nodes for each z-variable, and P ′ is π′-oblivious
for some variable sequence π′ containing each variable 2k = � times and having
π as subsequence. Lemma 2 implies the lower bound of 2n/((2�−1)(24�))−1 =
2n/((4k−1)(28k))−1 for P ′ and P . ��

6 An Application to Symbolic Algorithm Analysis

Finally, we sketch an application of the lower bound for the graph of integer
multiplication to the analysis of a symbolic algorithm for the all-pairs shortest-
paths problem in OBDD-represented weighted graphs. Input is the OBDD of a
graph G = (V, E, c), c : E → IN, while the output OBDD represents the shortest
path distances dist : V 2 → IN0. The algorithm presented in [9] (called A in the
following) has polylogarithmic runtime O

(
log3 (|V | · cmax)

)
, cmax := {c(e) | e ∈

E}, if both input and output OBDD have constant width while not skipping any
variable tests. However, the method works only for strictly positive edge weights
c(e) ∈ IN>0.

Another approach mentioned in [9] works also for weights c(e) = 0. It it-
eratively generates OBDDs for functions Sk with Sk(x, y, d) = 1 iff there is a
shortest path from node |x| to node |y| of length |d| visiting no more than 2k

edges. We call this algorithm B. In order to justify algorithm A, it can be shown
that B has not necessarily polylog. runtime on constant width OBDDs. Similar
to [27–Sect. 7], we construct an input graph Gn = (Vn, En, cn) such that both

Lower Bounds on the OBDD Size of Graphs of Some Popular Functions 307

Gn and the algorithm output distn have constant width OBDDs, while some
intermediate function Sk generated by B has only exponential OBDDs.

Gn is the union of subgraphs Gi,j
n with 2n−1 + 1 ≤ i, j ≤

2n − 1 sharing only one special node s. Each subgraph Gi,j
n is a path

(s, u0, . . . , u2n−j−1, v2n−j , . . . , v2n−1) =: pi,j with edge weights cn(·, u·) := 1,
cn(v·, ·) := i, and cn(u2n−j−1, v2n−j) := i + j − 2n. Moreover, there are nodes
w2n−j , . . . , w2n−1 connected by shortcut edges (u2n−j−1, w2n−j), (w2n−j , v2n−j),
(v�, w�+1), and (w�+1, v�+1) for 2n − j ≤ � ≤ 2n − 2 with weight 1. Note that
shortcut edges bridge all edges whose weight is larger than 1. Figure 2 shows
subgraph G6,5

3 .

1 1 1 3 6 6 6 6s

w3 w4 w5 w6 w7

v7v6v5v4u2u1u0 v3

Fig. 2. G6,5
3 . Edges incident to w-nodes have weight 1

It can be easily verified that the shortest path from s to v2n−1 in Gi,j
n uses

all shortcut edges and has length 2n + j. Using an appropriate binary node
encoding, these shortest path lengths have OBDDs with constant width. This
can also shown for all other node pairs in Gn and the OBDD for Gn itself
(analogous to [27–Sect. 7.1]). That is, the preconditions are fulfilled and A has
polylog. runtime on Gn.

On the other hand, the intermediate function Sn generated by B on Gn must
not cover the shortest s–v2n−1-path in Gi,j

n because only 2n edges are allowed.
Therefore, it has to represent the direct path pi,j that uses no shortcut edges,
which has length (2n − j)+(i + j − 2n)+(j−1)i = i · j. The OBDD representa-
tion of the corresponding characteristic function inherently contains the symbolic
graph of integer multiplication. In this way, it is possible to show an exponential
lower bound on the OBDD size of Sn w. r. t. its number of Θ(log |Vn|+ log cmax

n)
Boolean variables. This implies that B, while allowing zero weights, has not the
same convenient runtime properties as A. A detailed discussion of this applica-
tion can be found in the extended version of this paper.

So Theorem 1 has been used to show limits of the symbolic APSP-algorithm
B and to justify the restriction of A to strictly positive edge weights.

7 Conclusions and Open Problems

Exponential lower bounds on the OBDD size of the fundamental and hard func-
tions MUL, SQU, ISA, and HWB carry over to the symbolic graph scenario.
This has not to be the case in general as seen for the counterexample function
vector FSA. Graphs of such simply-structured functions can then be used to

308 D. Sawitzki

show limits of symbolic graph algorithms, which has been done exemplarily for
a symbolic all-pairs shortest-paths algorithm.

Corollary 2 covers only a restricted version of the symbolic graph of squaring.
The OBDD size of its unrestricted graph is an open question yet; experiments
suggest that it is also exponential. Moreover, it is of interest whether exponential
lower bounds for integer multiplication w. r. t. more general types of branching
programs carry over to the symbolic graph scenario, too (see, e. g., [28, 29, 30]).

Acknowledgments. Thanks to André Gronemeier, Martin Sauerhoff, Detlef
Sieling, and Ingo Wegener for proofreading and helpful discussions.

References

1. Borodin, A., Cook, S.: A time–space tradeoff for sorting on a general sequential
model of computation. SIAM Journal on Computing 11 (1982) 287–297

2. Hachtel, G., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer
Academic Publishers, Boston (1996)

3. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Boston
(1994)

4. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM, Philadel-
phia (2000)

5. Hachtel, G., Somenzi, F.: A symbolic algorithm for maximum flow in 0–1 networks.
Formal Methods in System Design 10 (1997) 207–219

6. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: SOFSEM’04.
Volume 2932 of LNCS., Springer (2004) 301–313

7. Woelfel, P.: Symbolic topological sorting with OBDDs. In: MFCS’03. Volume 2747
of LNCS., Springer (2003) 671–680

8. Sawitzki, D.: Experimental studies of symbolic shortest-path algorithms. In:
WEA’04. Volume 3059 of LNCS., Springer (2004) 482–497

9. Sawitzki, D.: A symbolic approach to the all-pairs shortest-paths problem. To
appear inWG’04 (2004)

10. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: SODA’03. (2003) 573–582

11. Gentilini, R., Policriti, A.: Biconnectivity on symbolically represented graphs: A
linear solution. In: ISAAC’03. Volume 2906 of LNCS., Springer (2003) 554–564

12. Bloem, R., Gabow, H., Somenzi, F.: An algorithm for strongly connected compo-
nent analysis in n log n symbolic steps. In: FMCAD’00. Volume 1954 of LNCS.,
Springer (2000) 37–54

13. Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for
the computation of fair cycles. In: FMCAD’00. Volume 1954 of LNCS., Springer
(2000) 143–160

14. Hojati, R., Touati, H., Kurshan, R., Brayton, R.: Efficient ω-regular language
containment. In: CAV’93. Volume 663 of LNCS., Springer (1993) 396–409

15. Jin, H., Kuehlmann, A., Somenzi, F.: Fine-grain conjunction scheduling for sym-
bolic reachability analysis. In: TACAS’02. Volume 2280 of LNCS., Springer (2002)
312–326

16. Moon, I., Kukula, J., Ravi, K., Somenzi, F.: To split or to conjoin: The question
in image computation. In: DAC’00, ACM Press (2000) 23–28

Lower Bounds on the OBDD Size of Graphs of Some Popular Functions 309

17. Xie, A., Beerel, P.: Implicit enumeration of strongly connected components. In:
ICCAD’99, ACM Press (1999) 37–40

18. Feigenbaum, J., Kannan, S., Vardi, M., Viswanathan, M.: Complexity of prob-
lems on graphs represented as OBDDs. Chicago Journal of Theoretical Computer
Science 1999 (1999) 1–25

19. Breitbart, Y., III, H.H., Rosenkrantz, D.: On the size of binary decision diagrams
representing Boolean functions. Theoretical Computer Science 145 (1995) 45–69

20. Woelfel, P.: New bounds on the OBDD-size of integer multiplication via universal
hashing. In: STACS’01. Volume 2010 of LNCS., Springer (2001) 563–574

21. Keim, M., Drechsler, R., Becker, B., Martin, M., Molitor, P.: Polynomial formal
verification of multipliers. Formal Methods in System Design 22 (2003) 39–58

22. Jukna, S.: The graph of integer multiplication is hard for read-k-times networks.
Technical Report 95–10, Universität Trier (1995)

23. Wegener, I.: Optimal lower bounds on the depth of polynomial-size threshold
circuits for some arithmetic functions. Information Processing Letters 46 (1993)
85–87

24. Gergov, J.: Time-space tradeoffs for integer multiplication on various types of input
oblivious sequential machines. Information Processing Letters 51 (1994) 265–269

25. Alon, N., Maass, W.: Meanders and their applications in lower bound arguments.
Journal of Computer and System Sciences 37 (1988) 118–129

26. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer,
Berlin Heidelberg New-York (1997)

27. Sawitzki, D.: On graphs with characteristic bounded-width functions. Tech-
nical report, Universität Dortmund (2004) Available via http://ls2-www.cs.uni-
dortmund.de/˜sawitzki/OGwCBWF.pdf.

28. Ablayev, F., Karpinski, M.: A lower bound for integer multiplication on randomized
ordered read-once branching programs. Information and Computation 186 (2003)
78–89

29. Ponzio, S.: A lower bound for integer multiplication with read-once branching
programs. SIAM Journal on Computing 28 (1998) 798–815

30. Woelfel, P.: On the complexity of integer multiplication in branching programs with
multiple tests and in read-once branching programs with limited nondeterminism.
In: CCC’02, IEEE Press (2002) 80–89

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 310 – 319, 2005.
© Springer-Verlag Berlin Heidelberg 2005

XML-Based Declarative Access Control

Robert Steele, William Gardner, Tharam S. Dillon, and Abdelkarim Erradi

Faculty of Information Technology, University of Technology, Sydney
PO Box 123, Broadway NSW 2007, Australia

{rsteele, wgardner, tharam, karim}@it.uts.edu.au

Abstract. XML, a self-describing and semi-structured data format, is becoming
a standard to represent and exchange data between applications across the Web.
XML repositories are also starting to be used either to store data or as an
interoperability layer for legacy applications and data sources. The widespread
use of XML highlights the need for flexible access control models for XML
documents to protect sensitive and valuable information from unauthorised
access. This paper presents a novel declarative access control model and
elaborates how this model allows the expression of access control rules in
XML. The paper further introduces the operational semantics of the model by
describing the Xplorer engine which supports search-browse-navigate activities
on XML repositories. Xplorer takes as inputs XML-based data schema, instance
data and access control rules to auto-generate an access control-enabled Web
application in accordance with these rules.

1 Introduction

eXtensible Markup Language (XML) [1] is a widely accepted standard for structuring
data by adding metadata to elements using self-descriptive tags. It is a fundamental
part of the future Web and eBusiness. This creates a need for new ways to securely
and effectively search and browse semi-structured content by using more expressive
mechanism than just keywords. Despite good results provided by the current
keyword-oriented search, searching semi-structured content with such tools suffers
from limited query interface, limited customisation to individual users and often
returns inaccurate query results. This is because keyword-based search does not make
use of the semantics and the relationships embedded in the content. This can result in
a user having to filter through numerous mostly irrelevant documents to find the right
information. In addition semi-structured data potentially supports sophisticated and
fine-grain differentiation of access capabilities between different users.

Our research attempts to address these problems by empowering the information
seeker with intuitive auto-generated multi-field search interface and also to provide a
system that can support fine-grained differentiation of access capabilities between
users. One of the critical issues related to search of XML content is the protection of
valuable and sensitive information (e.g. Electronic Health Records - EHR) against
unauthorised access; hence there is a strong need for defining powerful access control
models for XML documents.

 XML-Based Declarative Access Control 311

XML is increasingly used for encoding all kinds of documents such as product
catalogues, digital libraries and Electronic Health Records (EHR). This growth led to
increasing interest in XML document access control. Our aim is to develop extensible
models and tools for defining and configuring fine-grained access control policies for
XML documents. These policies will be enforced by an access control aware
framework to auto-generate a multi-field user interface to search XML repositories.
The proposed framework dramatically reduces UI development and maintenance time
as the interface and the access constraints are not hard-coded in the application and
this also enables flexible customisation at low cost.

This paper provides a presentation of the features of the proposed access control
model and interpreting engine, named Xplorer [2] system by showing how the
techniques could be used for secure navigation and search of large EHR as an
example. The rest of the paper is organised as follows. Section 2 presents a brief
survey of related works. The system architecture is introduced in Section 3 and the
declarative access control model introduced in Section 4. Section 5 describes the
proposed access control model for auto-generated interface through a sample
prototype. The last section concludes and gives an outlook for future work.

2 Related Work

There are three related areas in relation to the scope of this paper; 1) generation of the
interface to XML data; 2) using a graphical user interface to pose queries and 3) XML
access control. There are multiple existing works dealing with 1) and 2), graphical
interfaces for displaying and querying data repositories such as Odeview [3, 4], Pesto
[5] and BBQ [6]. Odeview and Pesto deal with graphical interfaces for browsing and
querying object oriented databases not XML-based data. BBQ does address the
searching and accessing of XML-based data and provides a new underlying query
language XMAS. Other work in this area includes XQForms and QURSED [7, 8].
These works has looked at simpler schemas and at developer tools rather than
complete auto-generation. This paper presents a more sophisticated approach to take
into account of fine-grained data access constraints in the process of providing an
auto-generated user interfaces for the manipulation of XML data. This is an extension
to our previous work [9-11] to auto-generate UI from XML Schema.

Regarding XML security, the literature offers several approaches to define and
enforce access rights on XML documents. Kudo and Hada [12] proposed XML
Access Control Language (XACL). XACL is used to specify an object-subject-action-
condition oriented access control policy. It supports flexible provisional authorisation
to a document based on whether certain conditions are met; e.g., the subject is
allowed access to confidential information, but the access must be logged. Bertino et
al. [13, 14] defined Author-X system as a suite of tools focusing on access-control
enforcement and security administration for XML documents. Damiani et al. [15, 16]
also specify a language for encoding access restrictions at the DTDs/schemas level or
for individual XML documents. Gabillon and Bruno [17] implement access control by
converting their “authorization sheet” to an XSLT document that can then extract a
view of the accessible part of the corresponding XML document.

XACML (eXtensible Access Control Markup Language) [18] is an OASIS
standard based on work including that of Kudo, Damiani, and Bertino. It standardises

312 R. Steele et al.

access request/response format, architecture of the policy enforcement framework,
etc., but it does not address deriving access control rules from the existing policy
base. These approaches are based on XPath [19], XSL [20] and custom constructs that
were developed to specify access conditions. Goel et al. [21] developed an XQuery-
based [22] approach for deriving fine-grained access control rules from schema-level
rules, document content, or rules on other documents. Miklau et al. [23] proposed
cryptography technique to ensure that published data is only visible to authorised
users. Recently a security views technique has been proposed in [24], it provides
each group an XML view consisting of only the information that the users are
authorised to access but the proposed technique only supports DTDs.

Our work extends ideas from both XML access control research and the research
into user interface generation to provide an access control framework for viewer
applications for semi-structured data. While a fine-grained policy definition is
available, the access control policies are well keep separated from the actual
underlying data. Our work differs from previous work in that it provides an access
control model including the semantics of the access control privileges in terms of their
interpretation by a generic semi-structured data viewer application.

3 System Architecture

As shown in Figure 1, the Xplorer system will rely on XML schemas of the data as
well as access control rules encoded using the proposed constraints vocabulary. The
framework will support searching XML repositories without requiring end-users to
use complex XML query languages. The security enforcement module will enforce
access control rules either by refining the XQuery to run against the XML repository
or by generating and applying XML transformations via dynamically generated XSLT
from the access control rules. In this paper we will focus on the XML security
features of the framework.

Fig. 1. Xplorer architecture

4 Declarative Access Control Model

After reviewing the literature about XML access control we have come to the
conclusion that there is still a need for a clear and simple language to declaratively
encode the semantics of an access control policy. The existing approaches require
costly runtime security checks as access to each element requested by the user
requires a request to be made to query the security policy. This will result in a poor
performance and scalability.

 XML-Based Declarative Access Control 313

Fig. 2. Permissions and their semantics

The Role Based Access Control model is shown in Figure 3 and the set of possible
privileges is shown in Figure 2. This model allows a role to be attached to a user and
amongst other objects allows the adding of a sensitivity value/attribute to elements of
an XML data schema. An access control policy, consisting of a set of declarative
rules, defines the roles’ privileges to various sensitivity levels and sections of the
XML document. Finally the access control rules are dynamically taken into account
by Xplorer [2] to restrict access to the parts of the document/ repositories the user (of
a particular role) is allowed to access. The semantic relationships between privilege
types are shown in the diagram on Figure 2.

Fig. 3. Role based access control security model

The access control enforcement module will apply the access control policy by first
retrieving the access control rules that apply to the user, based on the role that is
assigned to the user. There is a configuration parameter to instruct the framework to
cache the access control for a specific period in order to avoid repetitive access
control queries. The system will then replace any references to session variables (e.g.
current user Id) with the actual values from the session object. If any of the access
control rules apply to the requested data then the system will refine the auto-generated
query to ensure that the query only requests the data the user has access to. The query
results will be intercepted by the UI generator to provide a user friendly view of the
results.

314 R. Steele et al.

Fig. 4. eHealth Record data model

To illustrate this in this paper, we will use the example of EHR data, such as the
one defined in Figure 4. Suppose that a hospital wants to impose the following
security policy on the e-Health records, with 2 types of role defined in the security
policy, namely Doctor and Patient, according to the following:

− The doctor can access the records of all patients but only the MedicalTest results
of the patients he/she takes care of. For PatientNote the doctor can view and
search but not add or update.

− A patient is only allowed to access his/her own record, which will allow the patient
to view all information except DoctorNote and MedicalTest. However, the
only editing privilege of a patient is for PatientNote.

<RolePrivileges>
 <rule RoleId="Doctor">
 <privilege PrivilegeType="All">
 <DataSentivityFrom>1</DataSentivityFrom>
 <DataSentivityTo>4</DataSentivityTo>
 <conditions>
 <predicate type="equal" scope="//MedicalTest">
 <parameter type="xpath">//PatientRecord/Doctor</parameter>
 <parameter type="variable">Server.GetValue(Session.UserId)</parameter>
 </predicate>
 </conditions>
 <exceptions>
 <exception type="Search”>//PatientNotes</exception>
 <exception type="Browse”>//PatientNotes</exception>
 </exceptions>
 </privilege>
 </rule>
 <rule RoleId="Patient">
 <privilege PrivilegeType="Browse">
 <DataSentivityFrom>1</DataSentivityFrom>
 <DataSentivityTo>2</DataSentivityTo>
 <conditions>
 <predicate type="equal" scope="//PatientRecord">
 <parameter type="xpath">//PatientRecord/PatientID</parameter>
 <parameter type="variable">Server.GetValue(Session.UserId)</parameter>
 </predicate>
 </conditions>
 <exceptions>
 <exception type="Add">//PatientNotes</exception>
 </exceptions>
 </privilege>
 </rule>
</RolePrivileges>

Fig. 5. Example of declarative access control rules

The above constraints can be easily encoded using the proposed method by firstly
adding the data sensitivity level into the existing data model schema. We have

 XML-Based Declarative Access Control 315

decided four sensitivity levels, represented by the integer value of 1 to 4, where level
1 denote elements that are unclassified to level 4 that represent elements that are
consider highly classified. In the case of this example, the data sensitivity rating of 4
was assigned to DoctorNote and MedicalTest.

With the data sensitivity level in place, the access control policy could then be
defined based on the role of the user, and the access privilege allowed for the defined
role type. The access policy for the eHealth records example is encoded via
declarative access control rules as shown in Figure 5.

5 Interpreting Access Control Rules

The Xplorer provides the user interface for the searching, viewing and manipulation
of semi-structured data. The UI generator constructs the user interface based on the
semantics defined in the data model schema. Taking into account the access control
policy in the role based model, Xplorer presents the appropriate data to user. Its
interface at any one time is in one of three modes (Figure 6):

• Search
• View (element instance)
• Update (element instance)

Fig. 6. State transitions for Xplorer

In the example of the eHealth records, Xplorer will provide the doctor (Figure 7)
an user interface that has elements with sensitivity level between 1 and 4 and with the
options to search and edit most of the data, while the patient will have a more limited
access (Figure 8), but still be able to update patient note.

The Search mode (e.g. Figure 7a) is generated from the data model XML Schema so
as to only display search fields (i.e. just the simpleType elements) corresponding to the
elements from the schema for which the user has search privilege under the provided
access control policy. In the Search mode the user will have the ability to either switch
to View mode or Update mode. When in Search mode, in addition to the search text
fields and hyperlinks to nested XML elements two buttons will be displayed; the Add
button and the Find button. The Add button adds a new instance of the type of the
current element. Clicking the Add button take Xplorer into the Update mode. Clicking
the Find button submits the search request and takes Xplorer into the View mode.

316 R. Steele et al.

a) As the doctor has access to
all elements and various
permissions the default
interface will prompt for
search parameters for any of
the simpleType XML
elements. Complex elements
appear as hyperlinks.

b) Patient records view for
“John”. Note that Medical Test
link is unavailable because this
patient is not under the care of
the currently authenticated
doctor. When the Update
button is clicked screen c) is
shown, Patient Note link will
bring screen d), Treatment link
will bring screen f).

c) Screen to update the
Patient Detail elements.

d) Search screen for Patient
Note, note that the Add button
is unavailable because the
Doctor does not have access
to do this for Patient Note.

e) Patient Note search results in
View Mode. Add, Update and
Delete buttons are unavailable
because a Doctor does not have
such access.

f) Since there is only one
instance of Treatment the
system defaults to View
Mode when Treatment link is
clicked.

Fig. 7. Xplorer example screens showing the interface provided to the Doctor

The Search mode is the default behaviour if the element that the user gets into
has more than one instance otherwise the View mode will be provided. For example
for the patient browsing a Health Record using Xplorer (see Figure 8a) he/she will
get a view of his/her records without the ability to search other records. In this case,
links to the appropriate sub elements are also presented.

 XML-Based Declarative Access Control 317

The View mode (e.g. Figure 7b) is generated from the XML instance elements
returned by a search request. In this mode all the elements are read-only with values
for simpleType elements displayed as labels and instance element of complexType
are displayed once again as hyperlinks so that the user can opt to drilldown into
various parts of the currently selected element. Depending on the current user
access policy, the View mode would provide a Search button to go back to the
Search mode, an Add button that takes Xplorer to Update mode to add a sibling
instance of the current element, an Update button to switch to the Update mode to
edit the values of the current element and a Delete button to delete the current
element and its child elements.

a) A Patient can only view
his/her own records without the
ability to search nor add or
update. Medical Test, and
Doctor Note are not shown
because patient only access to
elements at data sensitivity 1-2.

b) Treatment record of the
currently logged in patient.

c) Patient Note is the only part
of the EHR that the patient
can search, add or update.

Fig. 8. Xplorer example screens showing the interface examples provided to the Patient

The Update mode (e.g. Figure 7c) is used to update values of an instance. This
instance could be a new instance being added or an exiting instance being modified.
The interface is generated from the schema of the current element to be edited or
created. In this mode all the elements to which the user has write privilege will be
rendered as editable text boxes. Once the update is done (Submit clicked) the user is
returned to the View mode.

6 Discussion

The access control model comprises the key notions of access control rules, data
sensitivity levels, roles, and privilege. The data sensitivity level of each element node
that requires access control is declared in the data schema. Sensitivity level that is
declared on the high level of the element tree will cascade down to the sub elements.
However, a local declaration on any sub level can be used to override the cascaded

318 R. Steele et al.

sensitivity level. By attaching the sensitivity level to the data schema it is possible to
change access behaviour for all instance data of an element without changing all of
the instance documents – just a change to the schema is required. In addition a new
data element can easily be added to the data model, and the need to modify the access
control policy in the security model every time when a new element is added is
greatly reduced. The privilege classification and their semantic relation, coupling with
the use of data sensitivity level provide a simple yet powerful framework for the
definition of access control rules.

Combining the auto-generated search interface framework with the role based control
policy, the Xplorer interface allow user to search, view, update, and navigate through
the XML repositories, by presenting simpleType element on the current level with the
appropriate UI elements, while sub levels are show as hyperlinks. This presents a
generic technique to search and browse XML data that takes into account access control
rules. The propose framework could be utilized without modification to access and
update business records as well as it can be used for EHRs. The notion of a simple user
interface for the XML browse and search technique is also well suited to mobile clients
as it can be used to produce a simple interface to incrementally browse the data.

A vocabulary was defined to encode the access rules outside the raw instance data.
This allows the access control policies, roles and rules to be altered easily without
having to modify the data schema, data instances or other business logic. Just by
modifying the access control policy rules, new roles can be simply defined or existing
roles altered with a high level of fine-grained expressive power.

7 Conclusion

In this paper, we presented a declarative access control model and Xplorer, an engine
to interpret access control rules and provide secure searching and browsing of XML
repositories. First we defined an access control model, consisting of a set of privileges
and an access control rule schema, which provides powerful expressiveness to encode
access rules to semi-structured content. Secondly, we described the Xplorer engine to
take into account the access control rules. The auto-generated interface saves on
development effort and eases maintainability. Our future work will extend the
framework to define access rules and generate search interfaces for RDF/OWL-based
ontologies. We will also study access control to XML repositories using XML views
[25, 26].

References

[1] W3C-XML, Extensible Markup Language (XML). 2004.
[2] R. Steele, W. Gardner and T.S. Dillon. Xplorer: A Generic Search and Navigation

Application for Semi-structured Data Repositories. 3rd International Conference on
Communications, Internet, and Information Technology (CIIT 2004).

[3] R. Agrawal, N.H. Gehani and J. Srinivasan. OdeView: the graphical interface to Ode. In
Proceedings of the International Conference on Management of Data. 1990.

[4] S. Dar, N.H. Gehani, H.V. Jagadish and J. Srinivasan, Queries in an Object-Oriented
Graphical Interface. Journal of Visual Languages and Computing, 1995. 6(1): p. 27-52.

 XML-Based Declarative Access Control 319

[5] M. Carey, L. Haas, V. Maganty and J. Williams. PESTO: an integrated query/browser
for object databases. In Proceedings of the International Conference on Very Large
Databases (VLDB). 1996.

[6] K.D. Munroe and Y. Papakonstantinou. BBQ: A Visual Interface for Integrated Browsing
and Querying of XML. In Proceedings of the International Conference on Very Large
Databases (VLDB). 2000.

[7] M. Petropoulos, V. Vassalos and Y. Papakonstantinou. XML query forms (XQForms):
declarative specification of XML query interfaces. In Proceedings of the International
conference on World Wide Web. 2001.

[8] P. Mukhopadhyay and Y. Papakonstantinou. Mixing querying and navigation in MIX. In
Proceedings of the 18th International Conference on Data Engineering. 2002.

[9] R. Steele and T. Dillon. Ontology Driven System for Mobile Device Access of Electronic
Health Records. In Proceedings of the. 2004.

[10] R. Steele, Y. Ventsov and T. Dillon. Object-Oriented Database-based Architecture for
Mobile Enterprise Applications. In Proceedings of the IEEE ITCC04. 2004.

[11] R. Steele, Y. Ventsov and T.S. Dillon. XML Schema-based Discovery and Invocation of
Mobile Services. In Proceedings of the IEEE International Conference on e-Technology,
e-Commerce and e-Service, EEE'04. 2004.

[12] M. Kudo and S. Hada. XML document security based on provisional authorization. In
Proceedings of the 7th ACM conference on Computer and communications security
(CCS). 2000.

[13] E. Bertino, S. Castano and E. Ferrari, Securing XML documents with Author-X. Internet
Computing, IEEE, 2001. 5(3): p. 21-31.

[14] E. Bertino and E. Ferrari, Secure and selective dissemination of XML documents. ACM
Transactions on Information and System Security (TISSEC), 2002. 5(3): p. 290-331.

[15] E. Damiani, P. Samarati, S. De Capitani di Vimercati and S. Paraboschi, Controlling
access to XML documents. Internet Computing, IEEE, 2001. 5(6): p. 18-28.

[16] E. Damiani, S.D.C.d. Vimercati, S. Paraboschi and P. Samarati, A fine-grained access
control system for XML documents. ACM Transactions on Information and System
Security (TISSEC), 2002. 5(2): p. 169 - 202.

[17] A. Gabillon and E. Bruno. Regulating access to XML documents. In Proceedings of the
the 15th Annual Conference on Database Security. 2001.

[18] OASIS, eXtensible Access Control Markup Language (XACML) version 1.0. 2003.
[19] W3C-XPath, XML Path Language (XPath) Version 1.0. 1999.
[20] W3C-XSL, Extensible Stylesheet Language (XSL). 2003.
[21] S.K. Goel, C. Clifton and A. Rosenthal. Derived access control specification for XML. In

Proceedings of the Workshop On XML Security. 2003.
[22] W3C-XQuery, XQuery 1.0: An XML Query Language. 2004.
[23] G. Miklau and D. Suciu. Controlling access to published data using cryptography. In

Proceedings of the VLDB. 2003.
[24] W. Fan, C.-Y. Chan and M. Garofalakis. Secure XML querying with security views. In

Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2004. 2004.

[25] R. Rajugan, E. Chang, T.S. Dillon and L. Feng. XML Views: Part I. In Proceedings of the
14th International Conference on Database & Expert Systems Applications, DEXA 2003.
2003.

[26] V. Nassis, R. Rajugan, T.S. Dillon and W. Rahayu. Conceptual Design of XML
Document Warehouses. In Proceedings of the 6th International Conference on Data
Warehousing and Knowledge Discovery, DaWaK 2004. 2004.

VCD: A Visual Formalism for Specification of
Heterogeneous Software Architectures�

David Šafránek and Jǐŕı Šimša

Department of Computer Science, Faculty of Informatics,
Masaryk University Brno, Czech Republic

{xsafran1, xsimsa}@fi.muni.cz

Abstract. A visual formalism called Visual Coordination Diagrams
(VCD) for high-level design of heterogeneous systems is presented in
this paper. The language is based on a state-transition operational se-
mantics, which allows application of formal methods to software design.
Formal definition of VCD is included in the paper. Moreover, an example
of use of the language is also given.

1 Introduction

The importance of visual modeling languages such as UML [1] is very significant
in the domain of software engineering. The desired properties of such an uni-
versal visual design language are heterogeneity, hierarchy and component-based
structure. Additionally, to be able to analyze the software design using formal
methods, some unambiguous formal semantics is required. Unfortunately, there
is no formal semantics of UML [2].

In this paper we present Visual Coordination Diagrams (VCD) – a visual
formalism for specification of component-based distributed systems, based on
the idea of GCCS [3] and its extensions [4]. The VCD formalism can be viewed as
static architecture diagrams for specification of connections among components.
The key property of VCD is its two-level heterogeneity. The first level of this
heterogeneity is based on the possibility of combination of various coordination
models (both synchronous and asynchronous) in a particular specification. The
second level of the heterogeneity is the variability of specification of behavioral
aspects. This can be done in various notations which have to be, in some well-
defined sense, compatible with the supported coordination models.

The work on VCD is practically motivated by the formal verification project
Liberouter [5]. In this project, we have to deal with formal modeling of a complex
system composed of heterogeneous SW/HW units [6].

� This work has been supported by the Grant Agency of Czech Republic grant
No. 201/03/0509, the FP5 project No. IST-2001-32603 and the CESNET activity
Programmable hardware.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 320–329, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

VCD: A Visual Formalism for Specification of Heterogeneous Software 321

1.1 Background and Related Work

There is a group of visual languages for concurrent systems in which the classi-
cal state transition diagrams have been extended to fulfill the needs of design of
complex systems. Combining the concept of geometric inclusion with the concept
of hi-graphs, the hierarchy of states has been added, leading to Harel’s State-
charts [7]. The complexity of the syntactic richness of Statecharts has shown
that reaching a compositional formal semantics for such a powerful language is
impracticable. Various sub-dialects of Statecharts have been defined to achieve
required semantic properties [8]. The concept of Statecharts was also incorpo-
rated in UML [9], [10].

Another group of visual languages is based on the concept of message flow
graphs. They are employed to visually describe partial message passing interac-
tion among concurrent processes. The high level message flow diagrams called
Message Sequence Charts are based on this concept [11]. This notation does not
support hierarchical design. For its simple nature, it is widely used in telecom-
munication industry and it is also a part of UML.

VCD extends and generalizes ideas of the work on Graphical calculus of
communicating systems (GCCS) [3] and its synchronous extension SGCCS [4],
which adopt the process algebraic approach as the underlying semantic model.
In these languages, a very tight relation to the underlying process algebraic
semantic model limits the heterogeneity of both coordination and behavioral
layers. I.e., it is difficult to incorporate Statechart-like formalisms into GCCS.
In VCD we try to overcome these inconveniences by using of a more general
semantic model.

There is another architectural language, which is, similarly to VCD, based
on the idea of GCCS. It is called Architectural Interaction Diagrams (AID) [12].
VCD and AID both achieve some level of heterogeneity by avoiding the tight
relation with the CCS process algebra [13]. One of the significant differences be-
tween these two formalisms is in the underlying semantic model. AID is aimed
to be used for specification of interactive systems while in VCD the interactive
aspects can be additionally mixed with reactivity. At the behavioral layer, VCD
supports more expressive formalisms than AID, and thus allows more hetero-
geneity at this level.

Similarly to some of the classical textual architecture description languages
(ADLs) like Wright [14] or UniCON [15], VCD are based on the idea of tak-
ing connectors and computational components as different elements of system
architecture. Moreover, this concept is further refined in VCD. In contrast to
Wright, where the semantics of connectors is defined in terms of CSP processes,
which are based on handshake-style coordination, in VCD more complex coor-
dination mechanisms, e.g. multi-cast, can be modeled more conveniently. It is
mainly due to the fact of semantic modeling of any coordination event, e.g. a
broad-cast communication, as one atomic transition of a connector model. In
the domain of ADLs, there are some languages which support dynamic changes
of system structure, i.e. Darwin [16] or SOFA [17]. Unlike these languages, VCD

322 D. Šafránek and J. Šimša

does not support dynamism. VCD is aimed to be a simple visual formalism for
hierarchical description of coordination of system components.

The main reason for developing VCD is our belief in importance of build-
ing a formal framework for coordination of various kinds of Statecharts and
other visual formalisms for specification of component behavior. We would like
to establish a simple syntactic visual notation with suitable underlying formal
semantics. The chosen semantic model is based on composition of local tran-
sition systems, which represent particular components, resulting in one global
transition system formally representing the whole architecture description.

2 Overview of VCD

VCD is aimed to be a formal language for specification of communication rela-
tionships in component-based systems. An example of a simple VCD is depicted
in Fig. 1. Basic elements of the VCD formalism are component interfaces. Each
interface contains input and output ports. Interfaces are organized in so called
networks in which they can be connected by links to buses.

Buses represent connectors of components. They are used for specification of
various types of coordination mechanisms. Different types of buses can be mixed
together in a particular network. Consequently, systems with heterogeneous co-
ordination mechanisms can be effectively specified using a single uniform for-
malism. In VCD there is a concept of bus classes, which allows to specify generic
templates for various coordination media.

out
in C1 B C2

in
out

component interfaces

bus

Fig. 1. A network of components C1 and C2 connected to bus B

The key concept of VCD is in its hierarchical network structure, which unfolds
the coordination layer. This is achieved by the possibility of taking networks as
components of other networks (higher-level networks). The relation between a
network and its enclosing interface is defined by a gate. Gate maps ports of the
lower-level network to ports of the enclosing interface in the higher-level network.
An example of a network hierarchy is given in Fig. 2.

At the bottom-most level, behavior of system components has to be specified
explicitly. There is no direct visual notation for behavioral specification in VCD.
Instead of that, the formal semantic framework of so called VCD leaves is defined.
It is called behavioral layer. The behavioral layer is based on the semantic model
given by the notion of input/output labeled transition system (LTS) with sets
of input and output actions taken as labels. This allows any language with

VCD: A Visual Formalism for Specification of Heterogeneous Software 323

C2
inout

C1
in out

oB1B2C3
ib

a

lower−level network gate

Fig. 2. Network hierarchy

semantics defined in the domain of LTS to be used for behavioral specification
of system components. This property makes VCD heterogeneous also at the
behavioral layer. Heterogeneity at this level is achieved with respect to the set
of semantically compatible, but notationally different languages, which can be
incorporated to VCD for the purpose of behavioral description. As examples of
supported languages variants of Statecharts or Petri-Nets can be mentioned.

Semantics of VCD is based on a state transition model. By traversing the
network hierarchy, it relies on a formal mechanism of combining component
state transition models into one resulting state transition model of the top-most
network. This is done with respect to the communication relationships specified
by buses. Semantics of a particular bus class represents behavior of a specific
communication media.

3 Syntax and Semantics of VCD

In this section, the formal syntax of VCD is defined and its semantics given.

3.1 Syntax

VCD networks are formally represented as VCD terms. Before capturing them
formally we will build some basic notation.

Ports and Interfaces. The most basic elements of the coordination layer are
interfaces with ports. We fixW a countable set of write ports and R a countable
set of read ports. Interface I is defined as a pair consisting of a finite set of input
ports and a finite set of output ports — I = 〈W, R〉, W ⊆ W, R ⊆ R, W ∩R = ∅.
We mark projections IW = W the write-interface, IR = R the read-interface,
respectively.

Buses and Bus Classes. The key construct of the coordination layer is bus.
As it has been mentioned in the previous section, buses represent coordination
mechanisms. Particular types of coordination mechanisms are represented as bus

324 D. Šafránek and J. Šimša

classes, which are formally defined as input/output labeled transition systems
(I/O LTS).

Definition 1. Bus class B is a tuple 〈Q, T, q0〉 where
– Q is a finite set of states,
– q0 ∈ Q an initial state,
– T ⊆ Q× 2W × 2R ×Q a (countable) transition relation.

Any bus class can be instantiated as a particular bus and used for specifica-
tion of concrete connections among components in a network. The bus interface
is determined by the set of links which connect the bus to the ports of surround-
ing components. The finiteness of the bus interface puts a finite bound to the
transition relation of a bus instance. Formal definition of bus instance, given by
its interface and its class, is the following.

Definition 2. Bus instance B of a bus class B is a tuple B = 〈I,B〉, where I
is an interface and B a bus class.

The interface of the bus instance B will be denoted as I(B).

Gates, Networks and Leaves. Now we are going to define terms which for-
mally represent VCD network diagrams. In the network depicted in Fig. 2 there
are dashed lines which connect ports of subsystem interfaces to ports of the sur-
rounding network interface. Later on in this subsection, these dashed links will
be formalized as the notion of gate.

Definition 3. A VCD term is:
1. VCD leaf – behavioral model specified in any LTS-compatible language
2. VCD network N = 〈C̄, M̄ , L〉, where

(a) C̄ = 〈C1, . . . ,Cn〉 – vector of components
(b) ∀i : Ci = 〈Si, Ii, Gi〉

– Si . . .VCD term
– Ii . . . interface
– Gi . . . gate (see definition below)

(c) M̄ = 〈M1, . . . ,Mk〉 – vector of busses
(d) ∀j : Mj = 〈Ij ,Bj〉

– Ij . . . interface of a bus Mj

– Bj . . . class of a bus Mj
(e) L ⊆ ({1, . . . , n} × (W ∪ R)) × ({1, . . . , k} × (W ∪ R)) a set of links

satisfying:
if 〈〈i, p1〉, 〈j, p2〉〉 ∈ L then:
i. p1 ∈ W ⇔ p2 ∈ R
ii. p1 ∈ IW

i ∪ IR
i

iii. p2 ∈ IW (Mj) ∪ IR(Mj)
iv. 〈〈l, p′

1〉, 〈j, p2〉〉 ∈ L⇔ l = i ∧ p′
1 = p1

v. 〈〈i, p1〉, 〈l, p′
2〉〉 ∈ L⇔ l = j ∧ p′

2 = p2

The set of all VCD terms will be denoted by S.

VCD: A Visual Formalism for Specification of Heterogeneous Software 325

To formalize the feature of embedding a network into a higher-level network,
we set up a function εR (εW) which for any VCD network returns a set of all
its read (write) ports which have no connection to any bus. We call such ports
free ports. To overcome ambiguity of port names in the context of a network,
we index all the component interfaces in the scope of a particular network, and
mark each port with the index of its interface.

Definition 4. Let N = 〈C̄, M̄ , L〉 be a network.
– εW (N) = {〈i, w〉 | w ∈ IW

i ∧ ∀j, w′ : 〈〈i, w〉, 〈j, w′〉〉 /∈ L}
– εR(N) = {〈i, r〉 | r ∈ IR

i ∧ ∀j, r′ : 〈〈i, r〉, 〈j, r′〉〉 /∈ L}
We define interface of network N as a pair I(N) = 〈εW (N), εR(N)〉.

Gate is formally defined as a partial function relating ports of a particular
component interface to free ports of the network which is nested in that interface.
In the case when the nested structure is a leaf, the gate maps interface ports to
eponymous actions of the nested process.

Definition 5. Let I be an interface.

1. Let S be a VCD leaf encapsulated in the interface I. Let ports(S) ⊆ W ∪R
be a set of all actions of S. We define a gate of the leaf S as the identity
function G : IW ∪ IR → ports(S), ∀x ∈ IW ∪ IR. G(x) = x.

2. Let S = 〈〈〈S1, I1, G1〉, ..., 〈Sn, In, Gn〉〉, 〈M1, ...,Mk〉, L〉 be a VCD network
embedded in interface I. We define a gate of the network S as the partial
function G : IW ∪ IR → I(S) satisfying:
– ∀w ∈ IW . G(w) = 〈i, w′〉 ∧ 〈i, w′〉 ∈ εW (S)
– ∀r ∈ IR. G(r) = 〈i, r′〉 ∧ 〈i, r′〉 ∈ εR(S)

3.2 Semantics

In this subsection, the definition of the structural operational semantics of VCD
terms is sketched. Its precise definition is presented in the full version of this
paper [18].

As a semantic domain a class L of input/output labeled transition systems
(I/O LTS) with sets of input and output actions in transition labels is used.
Formally, the semantics is defined as a mapping ψ : S → L which assigns an I/O
LTS to each VCD term.

First of all, we define the notion of I/O LTS, which makes the semantic
domain for both the behavioral and the coordination layer.

Definition 6. An I/O LTS is a tuple 〈Q, T, q0〉 where
– Q is a finite set of states,
– q0 ∈ Q an initial state,
– T ⊆ Q× 2R × 2W ×Q a transition relation.

At the behavioral layer, the state transition semantics captures the dynam-
ics of atomic components. As VCD does not include any predefined syntactic
construct for the behavioral layer, this I/O LTS is the structure in which the
formalisms for behavioral description have to be encoded.

326 D. Šafránek and J. Šimša

At the coordination layer, the semantics of a VCD network is defined as
a global I/O LTS which composes transitions of local I/O LTSs representing
the semantics of network components. This composition is realized with respect
to the coordination model given by the specific bus classes instantiated in the
network. States of the global I/O LTS are represented as network configurations.
They respect the hierarchical structure of network terms. The formal definition
of a network configuration is the following.

Definition 7. Let N = 〈〈C1, ...,Cn〉, 〈M1, ...,Mk〉, L〉 be a network. We define
its configuration 〈s̄, b̄〉 as a vector of component and bus states
〈〈s1, ..., sn〉, 〈b1, ..., bn〉〉 where ∀i ∈ {1, ..., n}. si is a state of a component Ci

and ∀j ∈ {1, ..., k}. bj is a state of a bus Mj.

A network configuration contains a vector of current states of components
and a vector of current states of buses. Such network configurations determine
states of the resulting I/O LTS. Transitions of the global I/O LTS are defined
with respect to the network hierarchy using Plotkin-style inference rules.

SC:

Fig. 3. Subsystem S embedded in a component C

In figure 3, there is a scheme how the component C is built by embedding
of the subsystem S into a component interface. The subsystem S can be either
a leaf or a network. Transition system of the component C is derived from
the transition system of the embedded subsystem with respect to ports in the
interface. Actions of S which have no ports in the interface of component C are
hidden. The structure of the relevant inference rule for the situation when S is
a leaf is the following.

transition of S: q Γ−→Δ q′ (Γ ⊆ ports(S) ∩R and Δ ⊆ ports(S) ∩W)
transition of C: q IR∩Γ−−−→

IW ∩Δ
q′

A similar inference rule captures the case when S is a network. This case is
more complicated because of possible ambiguity of port names in the network
scope. In appendix, the inference rule for this case is precised.

In figure 4, there is a scheme of a network with n components arbitrarily
connected to m buses. For simplification, the links are not depicted. To define a
global transition system for the network N , transition systems of the components
and buses have to be composed. There are two different situations:

N:
C1:

M1 Mm
Cn:

Fig. 4. Components C1. . . Cn and buses M1. . . Mm embedded in a network N

VCD: A Visual Formalism for Specification of Heterogeneous Software 327

– Stand-alone components — their transitions are interleaved.
– Components connected to buses — their transitions are interleaved or syn-

chronized w.r.t. semantics of instantiated bus classes.

The inference rules for both of the situations above are defined in [18].

4 An Example of Architectural Specification in VCD

In this section we will demonstrate on a very simple example how the VCD
formalism, especially the concept of bus classes, can be used for specification of
a distributed software architecture.

outReceiver
in

outReceiver
in

in
out

Sender BUF

Fig. 5. Example of a concrete VCD network

In distributed software architectures, components of systems interact most
typically in asynchronous way. One of the coordination mechanisms which cap-
tures this flavor of interaction is asynchronous message passing. In figure 5 there
is a simple VCD network which specifies a distributed system with three com-
ponents. It can be taken as a part of the specification of some communication
protocol. There are one sender and two receiver components in the system. The
intended behavior of the sender is to pass the output information to the com-
munication media and continue some inner computation. On the other side, the
behavior of any receiver is to take the information from the media asynchronously
with computations of the sender.

To model this kind of interaction in the VCD framework, we establish a class
Bamp of asynchronous message passing buses. It can be formally defined as the
I/O LTS Bamp = 〈Q, T, q0〉 where:
– Q = {qw |w ∈ W} ∪ q0
– T is defined by disjunction of the following expressions:

1. ∀w ∈ W. 〈q0, {w}, ∅, qw〉 ∈ T
2. ∀qx ∈ Q. 〈qx, ∅, {x}, q0〉 ∈ T
3. ∀qx ∈ Q. 〈qx, ∅, ∅, qx〉 ∈ T

The first expression defines the reaction of the bus to incoming write-actions.
In the second expression, the interaction with receiver components is solved. The
last expression adds the empty self-transitions, which allow the interactions to
be potentially asynchronous.

328 D. Šafránek and J. Šimša

The countable transition relation, which is the part of the bus class defined
above, is made finite by the process of instantiation. In the example depicted in
figure 5, the bus class Bamp is instantiated and placed in the context of three
components. Thus, the number of transitions is bounded by the number of links
which interconnect the bus with the surrounding components. In figure 6, there
is the resulting transition system which represents this bus instance.

out/−

−/in1

−/in2

BUF

Fig. 6. Instance of asynchronous message-passing bus class

More complex types of bus classes modeling both synchronous and asyn-
chronous coordination models can be defined following the scenario presented
above. Together with the possibility of instancing different bus classes in the
context of one particular network, this example demonstrates the heterogeneity
of the VCD coordination layer.

5 Conclusions and Future Work

In this paper we have presented the formalism VCD for hierarchical specification
of heterogeneous system architectures. The key concept of the language are buses
which represent coordination models used in system architectures.

We see the main contributions of our work in three ways. First of all, the
component-based character of VCD together with its hierarchical structure based
on precise operational semantics allows to join the traditional design methods
with the formal methods known from the theory of process algebras. On the
other hand, the both syntactical and semantical separation of modeling the co-
ordination aspects from modeling the behavioral aspects makes it possible to
define a static communication infrastructure of a system independently of mod-
eling the behavioral parts. Finally, heterogeneity supported in both behavioral
and coordination layers of the language allows not only mixing of various co-
ordination models in one specification, but also using of different models for
behavioral description of components. For example, it is possible to put com-
ponents defined as Statecharts together with components defined as Petri Nets
and specify coordination relations among them using the constructs of the VCD
coordination layer.

We are implementing a graphical tool [18] which allows VCD diagrams to
be simply created and modified. In our future work, we would like to add the
typed value-passing support to VCD. We would like to bring the notion of equiv-
alences known from process algebraic theories and adapt them to VCD. We also

VCD: A Visual Formalism for Specification of Heterogeneous Software 329

aim to connect the editor of VCD with the distributed verification environment
DiVinE [19].

References

1. OMG: Unified Modeling Language. Version 2.0. OMG (2003)
2. Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff.

Technical Report MSC00-16, Weizman Institute of Science (2000)
3. Cleaveland, R., Du, X., Smolka, S.A.: GCCS: A Graphical Coordination Language

for System Specification. In: Proceedings of COORD’00, LNCS, Springer Verlag
(2000)

4. Šafránek, D.: SGCCS: A Graphical Language for Real-Time Coordination. In:
Proceedings of FOCLASA’02. Volume 68 of ENTCS., Elsevier Science (2002)

5. Antoš, D., Fuč́ık, O., Novotný, J.: Project of IPv6 Router with FPGA Hard-
ware Accelerator. In: Proceeding of 13th International Conference on Field-
Programmable Logic and Applications. Volume 2778., LNCS, Springer-Verlag
(2003) 964–967

6. Jan, J.H., Kratochv́ıla, T., Řehák, V., Šafránek, D., Šimecek, P.: How to Formalize
FPGA Hardware Design. Technical Report 4/2004, CESNET z.s.p.o. (2004)

7. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Technical report,
The Weizmann Institute (1987)

8. Maggiolo-Schettini, A., Peron, A., Tini, S.: A Comparison of Statecharts Step
Semantics. Theoretical Computer Science 290 (2003)

9. von der Beeck, M.: Formalization of UML-Statecharts. In: Proceedings of UML
2001. LNCS, Springer-Verlag (2001)

10. Harel, D., Kugler, H.: The Rhapsody Semantics of Statecharts (or, On the Ex-
ecutable Core of the UML). In: Proc. of 3rd Int. Workshop on Integration of
Software Specification Techniques for Applications in Engineering. Volume 3147.,
LNCS, Springer-Verlag (2004) 325–354

11. Leue, S.: Methods and Semantics for Telecommunications Systems Engineering.
PhD thesis, University of Berne (1994)

12. Ray, A., Cleaveland, R.: Architectural Interaction Diagrams: AIDs for System
Modeling. In: Proc. of ICSE 2003, IEEE (2003)

13. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
14. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.

Softw. Eng. Methodol. 6 (1997) 213–249
15. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Ab-

stractions for Software Architecture and Tools to Support Them. IEEE Trans.
Softw. Eng. 21 (1995) 314–335

16. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures. SIGSOFT
Softw. Eng. Notes 21 (1996) 3–14

17. Plášil, F., Bálek, D., Janeček, R.: SOFA/DCUP: Architecture for Component
Trading and Dynamic Updating. In: Proceedings of the International Conference
on Configurable Distributed Systems, IEEE Computer Society (1998) 43

18. Šafránek, D., Šimša, J.: Visual Formalism for Specification of Heterogeneous Soft-
ware Architectures. Technical Report FIMU-RS-2004-11, Faculty of Informatics,
Masaryk University Brno (2004)

19. ParaDiSe Lab, Masaryk University Brno: DiVinE project home page. (2004)

Cost-Constrained Minimum-Delay Multicasting
(Extended Abstract)

Satoshi Tayu, Turki Ghazi Al-Mutairi, and Shuichi Ueno

Department of Communications and Integrated Systems,
Tokyo Institute of Technology, Tokyo 152–8552–S3–57, Japan

{tayu, ueno}@lab.ss.titech.ac.jp

Abstract. We consider a problem of cost-constrained minimum-delay
multicasting in a network, which is to find a Steiner tree spanning the
source and destination nodes such that the maximum total delay along
a path from the source node to a destination node is minimized, while
the sum of link costs in the tree is bounded by a constant. The problem
is NP-hard even if the network is series-parallel. We present a fully
polynomial time approximation scheme for the problem if the network is
series-parallel.

1 Introduction

The multicasting is the simultaneous transmission of data from a source node to
multiple destination nodes in a network. The multicasting involves the generation
of a multicast tree, which is a Steiner tree spanning the source and destination
nodes. The performance of multicasting is determined by both the cost of the
multicast tree and the maximum delay between the source node and a destination
node in the tree. Therefore, constructing efficient multicasting is formulated as
a bicriteria Steiner tree problem.

In connection with the problem, the following problem has been considered
in the literature [1, 2, 3, 4, 5]. The delay-constrained minimum cost multicast tree
problem (DCMCMT) is to construct a multicast tree such that the cost of the
tree is minimized while the delay between the source node and a destination
node in the tree is bounded by a constant integer. DCMCMT is NP-hard since
it reduces to the Steiner tree problem, which is well-known to be NP-hard. Chen
and Xue proposed a fully polynomial time approximation scheme (FPTAS) for
DCMCMT if the number of destination nodes is bounded by a constant [1],
while many heuristic algorithms have been proposed in [2, 3, 4, 5]. We present a
pseudo-polynomial time algorithm for DCMCMT if the network is series-parallel.

We also consider the following problem, which is another variant of the prob-
lem of constructing efficient multicasting. The cost-constrained minimum de-
lay multicast tree problem (CCMDMT) is to construct a multicast tree such
that the maximum delay between the source node and a destination node in
the tree is minimized while the cost of the tree is bounded by a constant in-
teger. CCMDMT is NP-hard since it reduces to the cost-constrained shortest

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 330–339, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cost-Constrained Minimum-Delay Multicasting 331

path problem (CCSP) which is known to be NP-hard [6]. In fact, CCMDMT
is NP-hard even for series-parallel networks, since CCSP is NP-hard for series-
parallel networks as mentioned by Chen and Xue [7]. We present in this paper a
pseudo-polynomial time algorithm and an FPTAS for CCMDMT if the network
is series-parallel. This paper is the first to consider CCMDMT, as far as the
authors know.

Due to space limitations most proofs are omitted in the extended abstract
and will appear in the final version of the paper.

2 Problems

We consider a connected graph G with vertex set V (G) and edge set E(G). Each
edge e is assigned a cost γ(e) and a delay δ(e) which are assumed to be non-
negative integers. The cost of a subgraph H of G, denoted by γ(H), is defined as
γ(H) =

∑
e∈E(H) γ(e). The delay of a path P in G, denoted by δ(P), is defined

as δ(P) =
∑

e∈E(P) δ(e). A vertex s is designated as the source and a set D of
vertices is designated as the destinations. A tree T is called a multicast tree if
{s} ∪ D ⊆ V (T). The delay of a multicast tree T , denoted by δ(T), is defined
as δ(T) = max{δ(P (s, d))|d ∈ D, P (s, d): (s, d)-path in T}. Let Γ and Δ be
positive integers. The delay-constrained minimum cost multicast tree problem
(DCMCMT) is to construct a multicast tree T such that δ(T) ≤ Δ and γ(T)
is minimized, while the cost-constrained minimum delay multicast tree problem
(CCMDMT) is to construct a multicast tree T such that γ(T) ≤ Γ and δ(T) is
minimized.

3 Pseudo-Polynomial Time Algorithms

A graph is said to be series-parallel if it contains no subdivision of K4 as a
subgraph. A maximal series-parallel graph is called a 2-tree. The 2-trees can be
defined recursively as follows: (1) K2 is a 2-tree on two vertices; (2) Given a
2-tree on n vertices (n ≥ 2), a graph obtained from G by adding a new vertex
adjacent to the ends of an edge of G is a 2-tree on n + 1 vertices. A 2-tree on
n ≥ 2 vertices has 2n− 3 edges by definition.

In this section, we will show an O(nΔ3) time algorithm and an O(n4δmax
3)

time algorithm to solve DCMCMT and CCMDMT, respectively, for a series-
parallel graph G with n vertices, where δmax = max{δ(e)|e ∈ E(G)}. We use
methods similar to those used in [7]. We first augment a connected series-parallel
graph with n vertices to a 2-tree on n vertices using a linear time algorithm pre-
sented in [8]. Each added edge has infinite cost and delay so that the added edges
are never chosen in an optimal multicast tree. We next find an optimal multicast
tree in the 2-tree. The algorithms are based on the dynamic programming.

3.1 Preliminaries

Let G be a 2-tree and C3(G) be the set of triangles of G. A tree TG is defined
as follows: V (TG) = E(G) ∪ C3(G); for any e ∈ E(G) and ∇ ∈ C3(G), (e,∇) ∈

332 S. Tayu, T.G. Al-Mutairi, and S. Ueno

E(TG) if and only if e ∈ E(∇). TG thus defined is indeed a tree since G is a
2-tree. TG is considered as a rooted tree with root r, where r is an edge incident
to s in G.

Let C(p) be the set of all children of p ∈ E(G) in TG. Notice that a child of
p is a triangle in G. Let D(∇) be the set of triangles which are descendants of
∇ ∈ C3(G) in TG. For C′(p) ⊆ C(p), G[p, C′(p)] is a subgraph of G induced by
the edges of triangles in

⋃
∇∈C′(p)D(∇) together with edge p.

Let ≺ be a partial order on V (G) satisfying the following conditions:

• s ≺ v for all v ∈ V (G);
• If ∇ is a triangle with V (∇) = {x, y, z}, and edge (x, z) is the parent of ∇

with x ≺ z, then x ≺ y and y ≺ z.

Such an order can be constructed recursively from the root of TG as follows:
First, we define s ≺ v for edge r = (s, v). For every edge p = (x, z) with x ≺ z, if
p has a child triangle C, we define x ≺ y and y ≺ z for vertex y ∈ V (C) \ {x, z}.
We continue this process until ≺ is defined on every pair of endvertices of an
edge. Then the transitive reflexive closure of ≺ is the desired partial order.

For any edge p = (x, y) with x ≺ y and C′(p) ⊆ C(p), H
[p,C′(p)]
•-• , H

[p,C′(p)]
•◦ ,

H
[p,C′(p)]
◦• , and H

[p,C′(p)]
•• are subgraphs of G[p, C′(p)] such that each subgraph

contains the vertices (destinations) in D ∩ V (G[p, C′(p)]) and;

• H
[p,C′(p)]
•-• is a tree including both x and y,

• H
[p,C′(p)]
•◦ is a tree with x ∈ V (H [p,C′(p)]

•◦) and y �∈ V (H [p,C′(p)]
•◦),

• H
[p,C′(p)]
◦• is a tree with x �∈ V (H [p,C′(p)]

◦•) and y ∈ V (H [p,C′(p)]
◦•),

• H
[p,C′(p)]
•• consists of vertex-disjoint two trees T

[p,C′(p)]
x and T

[p,C′(p)]
y such that

x ∈ V (T [p,C′(p)]
x) and y ∈ V (T [p,C′(p)]

y).

Finally, let SΔ = {−∞, 0, 1, . . . , Δ}.

3.2 Functions

Let p = (x, y) be an edge with x ≺ y and C′(p) ⊆ C(p).
W•-•(p, C′(p); ξx, ξxy) is the minimum cost of a tree H

[p,C′(p)]
•-• in G[p, C′(p)]

such that max {δ(x, d)|d ∈ D ∩ V (G[p, C′(p)])} ≤ ξx and δ(x, y) ≤ ξxy, where
δ(u, v) is the delay of (u, v)-path in tree H

[p,C′(p)]
•-• , and ξx, ξxy ∈ SΔ.

W •-•(p, C′(p); ξy, ξxy) is the minimum cost of a tree H
[p,C′(p)]
•-• in G[p, C′(p)]

such that max {δ(y, d)|d ∈ D ∩ V (G[p, C′(p)])} ≤ ξy and δ(x, y) ≤ ξxy, where
δ(u, v) is the delay of (u, v)-path in tree H

[p,C′(p)]
•-• , and ξy, ξxy ∈ SΔ.

W•◦(p, C′(p); ξx) is the minimum cost of a tree H
[p,C′(p)]
•◦ in G[p, C′(p)] such

that max {δ(x, d)|d ∈ D ∩ V (G[p, C′(p)])} ≤ ξx, where δ(x, d) is the delay of
(x, d)-path in tree H

[p,C′(p)]
•◦ , and ξx ∈ SΔ.

W◦•(p, C′(p); ξy) is the minimum cost of a tree H
[p,C′(p)]
◦• in G[p, C′(p)] such

that max {δ(y, d)|d ∈ D ∩ V (G[p, C′(p)])} ≤ ξy, where δ(x, d) is the delay of
(x, d)-path in tree H

[p,C′(p)]
◦• , and ξy ∈ SΔ.

Cost-Constrained Minimum-Delay Multicasting 333

W••(p, C′(p); ξx, ξy) is the minimum cost of a forest H
[p,C′(p)]
•• in G[p, C′(p)]

such that max{δ(x, d)|d ∈ D ∩ V (T [p,C′(p)]
x)} ≤ ξx, and max{δ(y, d)|d ∈ D ∩

V (T [p,C′(p)]
y)} ≤ ξy, where δ(x, d) is the delay of (x, d)-path in tree T

[p,C′(p)]
x and

δ(y, d) is the delay of (y, d)-path in tree T
[p,C′(p)]
y , and ξx, ξy ∈ SΔ.

N◦◦(p) is defined to be 0 if G[p, C(p)] has no destination and ∞ otherwise.
For an edge p = (x, y) ∈ E(G) with x ≺ y and C′(p) ⊆ C(p), the ta-

ble W(p, C′(p)) for p and C′(p) is the list of values of W•-•(p, C′(p); ξx, ξxy),
W •-•(p, C′(p); ξy, ξxy), W•◦(p, C′(p); ξx), W◦•(p, C′(p); ξy), and W••(p, C′(p); ξx, ξy)
for every ξx, ξy, ξxy ∈ SΔ.

The following is immediate from the definition of functions above.

Lemma 1. For any ξ ∈ {0, 1, . . . , Δ}, min{W•◦(r, C(r); ξ), W•-•(r, C(r); ξ, Δ)}
is the minimum cost of a multicast tree T of G with δ(T) ≤ ξ, where r = (s, y) ∈
E(G) is the root of TG. ��

3.3 Basic Algorithm BA(G, s, D, γ, δ, Δ)

We describe in this subsection a basic algorithm BA(G, s, D, γ, δ, Δ) which com-
putes W(r, C(r)) for a 2-tree G with n vertices in O(nΔ3) time.

BA(G, s, D, γ, δ, Δ) first computes TG and chooses an edge incident with s
in G as the root of TG.

Then, BA(G, s, D, γ, δ, Δ) recursively computes the functions defined in Sec-
tion 3.2. We distinguish three cases.
Case 1 : C′(p) = ∅.
For every p = (x, y) ∈ E(G) with x ≺ y, and ξx, ξy, ξxy ∈ SΔ,

W•-•(p, ∅; ξx, ξxy) =

⎧⎪⎪⎨
⎪⎪⎩

γ(p) if the following conditions are satisfied:
(i) if y ∈ D then ξx ≥ δ(p); (ii) if x ∈ D then ξx ≥ 0;
(iii) ξxy ≥ δ(p),

∞ otherwise.

W •-•(p, ∅; ξy, ξxy) =

⎧⎪⎪⎨
⎪⎪⎩

γ(p) if the following conditions are satisfied:
(i) if y ∈ D then ξy ≥ 0; (ii) if x ∈ D then ξy ≥ δ(p);
(iii) ξxy ≥ δ(p),

∞ otherwise.

W•◦(p, ∅; ξx) =
{

0 if y �∈ D, and if x ∈ D then ξx ≥ 0,
∞ otherwise.

W◦•(p, ∅; ξy) =
{

0 if x �∈ D, and if y ∈ D then ξy ≥ 0,
∞ otherwise.

W••(p, ∅; ξx, ξy) =

⎧⎨
⎩

0 if the following conditions are satisfied:
(i) if x ∈ D then ξx ≥ 0, (ii) if y ∈ D then ξy ≥ 0,

∞ otherwise.

Case 2 : C′(p) = {∇} for some ∇ ∈ C(p).
For every p = (x, z) ∈ E(G) with C(p) �= ∅ and x ≺ z, for every ∇ ∈ C(p) with

334 S. Tayu, T.G. Al-Mutairi, and S. Ueno

V (∇) = {x, y, z}, E(∇) = {p = (x, z), q = (x, y), t = (y, z)}, and x ≺ y ≺ z, and
for every ξx, ξy, ξxy ∈ SΔ, the functions are computed as follows:

W•-•(p, {∇}; ξx, ξxz) =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
γ(p) + W•◦(q, C(q); ξ′

x) + W◦•(t, C(t); ξ′′
z)

∣∣ ξxz ≥ δ(p),
ξx ≥ max{ξ′

x, δ(p) + ξ′′
z }, (ξ′

x, ξ′′
z) ∈ S2

Δ

}
,

min
{
γ(p) + W•-•(q, C(q); ξ′

x, ξ′
xy) + W••(t, C(t); ξ′′

y , ξ′′
z)

∣∣ ξxz ≥ δ(p),
ξx ≥ max{ξ′

x, ξ′
xy + ξ′′

y , δ(p) + ξ′′
z }, (ξ′

x, ξ′
xy, ξ′′

y , ξ′′
z) ∈ S4

Δ

}
,

min
{
γ(p) + W••(q, C(q); ξ′

x, ξ′
y) + W •-•(t, C(t); ξ′′

z , ξ′′
yz)

∣∣ ξxz ≥ δ(p),
ξx ≥ max{ξ′

x, δ(p) + ξ′′
z , δ(p) + ξ′′

yz + ξ′
y}, (ξ′

x, ξ′
y, ξ′′

z , ξ′′
yz) ∈ S4

Δ

}
,

min
{
W•-•(q, C(q); ξ′

x, ξ′
xy) + W•-•(t, C(t); ξ′′

y ξ′′
yz)

∣∣ ξxz ≥ ξ′
xy + ξ′′

yz,
ξx≥max{ξ′

x, ξ′
xy + ξ′′

y }, (ξ′
x, ξ′

xy, ξ′′
y , ξ′′

yz) ∈ S4
Δ

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)

W •-•(p, {∇}; ξz, ξxz) =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
γ(p) + W•◦(q, C(q); ξ′

x) + W◦•(t, C(t); ξ′′
z)

∣∣ ξxz ≥ δ(p),
ξx ≥ max{ξ′

x, δ(p) + ξ′′
z }, (ξ′

x, ξ′′
z) ∈ S2

Δ

}
,

min
{
γ(p) + W •-•(q, C(q); ξ′

y, ξ′
xy) + W••(t, C(t); ξ′′

y , ξ′′
z)

∣∣ ξxz ≥ δ(p),
ξx ≥ max{ξ′

x, ξ′
xy + ξ′′

y , δ(p) + ξ′′
z }, (ξ′

y, ξ′
xy, ξ′′

y , ξ′′
z) ∈ S4

Δ

}
,

min
{
γ(p) + W••(q, C(q); ξ′

x, ξ′
y) + W •-•(t, C(t); ξ′′

z , ξ′′
yz)

∣∣ ξxz ≥ δ(p),
ξx ≥ max{ξ′

x, δ(p) + ξ′′
z , δ(p) + ξ′′

yz + ξ′
y}, (ξ′

y, ξ′′
y , ξ′′

z , ξ′′
yz) ∈ S4

Δ

}
,

min
{
W •-•(q, C(q); ξ′

y, ξ′
xy) + W •-•(t, C(t); ξ′′

z , ξ′′
yz)

∣∣ ξxz ≥ ξ′
xy + ξ′′

yz,
ξz≥max{ξ′

y + ξ′′
yz, ξ

′′
z }, (ξ′

y, ξ′
xy, ξ′′

z , ξ′′
yz) ∈ S4

Δ

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2)

W•◦(p, {∇}; ξx) = min

⎧⎪⎪⎨
⎪⎪⎩

min
{
W•◦(q, C(q); ξ′

x) + N◦◦(t)
∣∣ ξx≥ξ′

x,
ξ′
x ∈ SΔ

}
,

min
{
W•-•(q, C(q); ξ′

x, ξ′
xy) + W•◦(t, C(t); ξ′′

y)
∣∣

ξx≥max{ξ′
x, ξ′

xy + ξ′′
y }, (ξ′

x, ξ′
xy, ξ′′

y) ∈ S3
Δ

}
⎫⎪⎪⎬
⎪⎪⎭, (3)

W◦•(p, {∇}; ξz) = min

⎧⎪⎪⎨
⎪⎪⎩

min
{
N◦◦(q) + W◦•(t, C(t); ξ′′

z)
∣∣ ξz≥ξ′′

z ,
ξ′′
z ∈ SΔ

}
,

min
{
W◦•(q, C(q); ξ′

y) + W •-•(t, C(t); ξ′′
z , ξ′′

yz)
∣∣

ξz≥max{ξ′′
z , ξ′′

yz + ξ′
y}, (ξ′

y, ξ′′
z , ξ′′

yz) ∈ S3
Δ

}
⎫⎪⎪⎬
⎪⎪⎭, (4)

W••(p, {∇}; ξx, ξz) =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
W•◦(q, C(q); ξ′

x) + W◦•(t, C(t); ξ′′
z)

∣∣ ξx≥ξ′
x, ξz≥ξ′′

z ,
(ξ′

x, ξ′′
z) ∈ S2

Δ

}
,

min
{
W•-•(q, C(q); ξ′

x, ξ′
xy) + W••(t, C(t); ξ′′

y , ξ′′
z)

∣∣
ξx≥max{ξ′

x, ξ′
xy + ξ′′

y }, ξz≥ξ′′
z , (ξ′

x, ξ′
xy, ξ′′

y , ξ′′
z) ∈ S4

Δ

}
,

min
{
W••(q, C(q); ξ′

x, ξ′
y) + W •-•(t, C(t); ξ′′

z , ξ′′
yz)

∣∣ ξx≥ξ′
x,

ξz≥max{ξ′′
z , ξ′′

yz + ξ′
y}, (ξ′

x, ξ′
xy, ξ′′

z , ξ′′
yz) ∈ S4

Δ

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5)

Case 3 : C′(p) = C′′(p) ∪ {∇} for some C′′(p) ⊆ C(p) and ∇ ∈ C(p)− C′′(p).

Cost-Constrained Minimum-Delay Multicasting 335

For every p = (x, y) ∈ E(G), C′(p) ⊆ C(p), ∇ ∈ C′(p), and ξx, ξy, ξxy ∈ SΔ, the
functions are computed as follows:

W•-•(p, C′(p); ξx, ξxy) =

min

⎧⎪⎪⎨
⎪⎪⎩

min
{
W•-•(p, C′′(p); ξ′

x, ξ′
xy) + W••(p, {∇}; ξ′′

x , ξ′′
y)

∣∣ ξxy ≥ ξ′
xy,

ξx≥max{ξ′
x, ξ′′

x , ξ′′
y + ξ′

xy}, (ξ′
x, ξ′

xy, ξ′′
x , ξ′′

y) ∈ S4
Δ

}
,

min
{
W••(p, C′′(p); ξ′

x, ξ′
y) + W•-•(p, {∇}; ξ′′

x , ξ′′
xy)

∣∣ ξxy ≥ ξ′′
xy,

ξx≥max{ξ′
x, ξ′′

x , ξ′
y + ξ′′

xy}, (ξ′
x, ξ′

y, ξ′′
x , ξ′′

xy) ∈ S4
Δ

}
⎫⎪⎪⎬
⎪⎪⎭ , (6)

W •-•(p, C′(p); ξy, ξxy) =

min

⎧⎪⎪⎨
⎪⎪⎩

min
{
W •-•(p, C′′(p); ξ′

y, ξ′
xy) + W••(p, {∇}; ξ′′

x , ξ′′
y)

∣∣ ξxy ≥ ξ′
xy,

ξy≥max{ξ′
y, ξ′′

y , ξ′′
x + ξ′

xy}, (ξ′
y, ξ′

xy, ξ′′
x , ξ′′

y) ∈ S4
Δ

}
,

min
{
W••(p, C′′(p); ξ′

x, ξ′
y) + W •-•(p, {∇}; ξ′′

y , ξ′′
xy)

∣∣ ξxy ≥ ξ′′
xy,

ξy≥max{ξ′
y, ξ′′

y , ξ′
x + ξ′′

xy}, (ξ′
y, ξ′

y, ξ′′
y , ξ′′

xy) ∈ S4
Δ

}
⎫⎪⎪⎬
⎪⎪⎭ , (7)

W•◦(p, C′(p); ξx) = W•◦(p, C′′(p); ξx) + W•◦(p, {∇}; ξx), (8)
W◦•(p, C′(p); ξy) = W◦•(p, C′′(p); ξy) + W◦•(p, {∇}; ξy), (9)

W••(p, C′(p); ξx, ξy) = W••(p, C′′(p); ξx, ξy) + W••(p, {∇}; ξx, ξy). (10)

The computation of the tables for functions proceeds as follows. We first
compute W(p, C(p)) =W(p, ∅) for every leaf p of TG as in Case 1 above.

For every triangle ∇ with parent p and children q and t, W(p, {∇}) is com-
puted using tables W(q, C(q)) and W(t, C(t)) as in Case 2.

For every p ∈ E(G) with C(p) = {∇1,∇2, . . . ,∇|C(p)|}, W(p, C(p)) is com-
puted as follows. Let C(i)(p) = {∇1,∇2, . . . ,∇i} for 1 ≤ i ≤ |C(p)|.W(p, C(i)(p))
is computed usingW(p, C(i−1)(p)) andW(p, {∇i}) as in Case 3 for 2 ≤ i ≤ |C(p)|.

Finally, BA(G, s, D, γ, δ, Δ) outputs W(r, C(r)).

3.4 Analysis of BA(G, s, D, γ, δ, Δ)

We use the following lemmas to prove Theorem 1 below. The proofs of the
lemmas are omitted in the extended abstract.

Lemma 2. BA(G, s, D, γ, δ, Δ) computes W(r, C(r)), correctly. ��

Lemma 3. W(p, ∅) is computed in O(Δ2) time for any leaf p of TG. ��

Lemma 4. Let ∇ be a triangle with parent p and children q and t. Given
W(q, C(q)) and W(t, C(t)), W(p, {∇}) is computed in O(Δ3) time. ��

Lemma 5. Let p ∈ E(G), C(p) = {∇1,∇2, . . . ,∇|C(p)|}, and C(i)(p) = {∇1,∇2,

. . . ,∇i} for 1 ≤ i ≤ |C(p)|. Given W(p, C(i−1)(p)) and W(p, {∇i}), W(p, C(i)(p))
is computed in O(Δ3) time for 2 ≤ i ≤ |C(p)|. ��

336 S. Tayu, T.G. Al-Mutairi, and S. Ueno

Theorem 1. For a 2-tree G on n vertices, BA(G, s, D, γ, δ, Δ) computes W(r,
C(r)) in O(nΔ3) time.

Proof. The tables W(p, ∅) for all leaves p can be computed in O(nΔ2) time
by Lemma 3. Since the number of triangles is O(n), the tables W(p, {∇}) for
all triangles ∇ can be computed in O(nΔ3) time by Lemma 4. By Lemma 5,
W(p, C(p)) can be computed in O(|C(p)|Δ3) time. Since

∑
p∈E(G) |C(p)| = O(n),

the tablesW(p, C(p)) for all edges p can be computed in O(nΔ3) time. It follows
that BA(G, s, D, γ, δ, Δ) computesW(r, C(r)) in O(nΔ3) time by Lemma 2. ��

By Lemma 1 and Theorem 1, BA(G, s, D, γ, δ, Δ) computes the minimum
cost of a multicast tree with delay at most ξ for any ξ ∈ {0, 1, . . . , Δ}. If we
perform some bookkeeping operations such as recording how the minimum was
achieved during the computation of the tables for functions, we can construct
a delay-constrained minimum cost multicast tree in the same time complexity.
Thus, we have the following.

Corollary 1. Given a 2-tree G on n vertices, s, D, γ, δ, Δ, and an integer ξ,
0 ≤ ξ ≤ Δ, a minimum cost multicast tree T with δ(T) ≤ ξ can be constructed
in O(nΔ3) time. ��

We denote by MT(G, s, D, γ, δ, Δ, ξ) such an O(nΔ3) time algorithm con-
structing a minimum cost multicast tree T with δ(T) ≤ ξ for a given 2-tree G,
s, D, γ, δ, Δ, and an integer ξ, 0 ≤ ξ ≤ Δ.

3.5 Pseudo-Polynomial Time Algorithm for DCMCMT

Given a connected series-parallel
graph G′ with cost and delay
functions γ′ and δ′, we denote by
Ext(G′, δ′, γ′) a linear time procedure
for augmenting G′ to a 2-tree G with
V (G) = V (G′) [8], and extending γ′

and δ′ to γ and δ, respectively, by
defining γ(e) = ∞ and δ(e) = ∞
for each e ∈ E(G) − E(G′), and
γ(e) = γ′(e) and δ(e) = δ′(e) for each
e ∈ E(G′). Then, it is easy to see
that Algorithm 1 shown in Fig. 1.
solves DCMCMT for series-parallel
graphs, and we have the following by
Theorem 1.

Theorem 2. For a series-parallel
graph G with n vertices and a positive
integer Δ, Algorithm 1 solves DCM-
CMT in O(nΔ3) time. ��

Input a series-parallel graph G′, s ∈
V (G′), D ⊆ V (G′),
γ′ : E(G′) → N, δ′ : E(G′) → N,
Δ ∈ Z+.

Output a minimum cost multicast
tree T with delay at most Δ.

begin
Ext(G′, γ′, δ′);
BA(G, s, D, γ, δ, Δ);
MT(G, s, D, γ, δ, Δ, Δ);
if γ(T) < ∞

return T ;
else

return “NO”;
endif

end

Fig. 1. Algorithm 1

Cost-Constrained Minimum-Delay Multicasting 337

3.6 Pseudo-Polynomial Time Algorithm for CCMDMT

Given a cost bound Γ and the
table W(r, C(r)) for functions, we
denote by Min Delay(Γ,W(r, C(r)))
a linear time procedure for com-
puting the minimum ξ satisfying
min{W•-•(r, C(r); ξ, Δ), W•◦(r, C(r); ξ)}
≤ Γ if exists. It returns ∞ if there
exists no such ξ.

Since the number of edges of mul-
ticast tree is at most n − 1, the max-
imum delay of a multicast tree is
at most (n − 1)δmax, where δmax =
maxe∈E(G′) δ′(e). Thus, it is easy to
see that Algorithm 2 shown in Fig. 2
is a pseudo-polynomial time algorithm
for CCMDMT, and we have the fol-
lowing by Theorem 1.

Theorem 3. For a series-parallel
graph G with n vertices and a non-
negative integer Γ , Algorithm 2 solves
CCMDMT in O(n4δmax

3) time if
δmax ≥ 1. ��

Input a series-parallel graph G′,
s ∈ V (G′), D ⊆ V (G′),
γ′ : E(G′) → N, δ′ : E(G′) → N,
Γ ∈ Z+.

Output a minimum delay multicast
tree T with cost at most Γ .

begin
δmax := max

e∈E(G′)
δ(e);

Δ′ := (n− 1)δmax;
Ext(G′, γ′, δ′);
BA(G, s, D, γ, δ, Δ′);
Min Delay(Γ,W(r, C(r)));
if ξ < ∞

MT(G, s, D, γ, δ, Δ, ξ);
return T ;

else
return “NO”;

endif
end

Fig. 2. Algorithm 2

4 FPTAS for CCMDMT

We use standard techniques [7, 6, 9, 10] to turn BA(G, s, D, γ, δ, Δ) into an FP-
TAS for CCMDMT. We show in Section 4.1 a pair of upper and lower bounds
U and L for the minimum delay of a cost constrained multicast tree such that
U/L ≤ n − 1. For any ε > 0, we show in Section 4.2 a (1 + ε)-approximation
algorithm for CCMDMT. The algorithm runs in O(n7/ε3) time, provided that
we have a pair of upper and lower bounds U and L for the delay of a cost con-
strained multicast tree such that U/L = O(n). It follows that we have an FPTAS
for CCMDMT.

4.1 Upper and Lower Bounds for Minimum Delay

We use a technique similar to [7]. Let ν1 < ν2 < · · · < νk be different edge delays,
and γj be the cost function defined as γj(e) = γ(e) if δ(e) ≤ νj , and γj(e) = ∞
otherwise. Let Tj be a minimum cost multicast tree of G for γj , and J be the
minimum j such that γj(Tj) ≤ Γ .

By the definition of J , the minimum delay of a cost constrained multicast tree
is at least νJ and at most (n− 1)νJ . Since such J and also TJ can be computed
in O(n log n) time [7], we have the following.

338 S. Tayu, T.G. Al-Mutairi, and S. Ueno

Theorem 4. A pair of upper and lower bounds U and L for the minimum delay
of a cost constrained multicast tree satisfying U/L = n − 1 can be computed in
O(n log n) time. Moreover, a multicast tree TJ with cost at most Γ and delay at
most U can also be computed in O(n log n) time. ��

Given a 2-tree G with source s and destinations D, cost and delay functions
γ and δ, and a positive integer Γ , we denote by Comp UL(G, s, D, γ, δ, Γ) an
O(n log n) time procedure for computing upper and lower bounds U and L with
U/L ≤ n− 1.

4.2 FPTAS for CCMDMT

For any α > 0, let δα be a delay function defined as δα(e) = $αδ(e)% for any
e ∈ E(G). Let Tα be a minimum delay multicast tree with cost at most Γ for δα

and OPT(δα) = δα(Tα). Notice that T1 is a minimum delay multicast tree with
cost at most Γ for δ = δ1. We denote by Pα a maximum delay path in Tα for
δα.

By the definition of δα, we have δ(e) ≥ δα(e)/α and

δ(e) < (δα(e) + 1)/α (11)
for any e ∈ E(G). If we denote by P ′

1 a maximum delay path of T1 for δα,
OPT(δ) =

∑
e∈E(P1)

δ(e) ≥
∑

e∈E(P ′
1)

δ(e) ≥
∑

e∈E(P ′
1)

δα(e)/α ≥
∑

e∈E(Pα)

δα(e)/α,

where the second inequality follows from δ(e) ≥ δα(e)/α. Thus, we have

OPT(δ) ≥ δα(Tα)/α

= OPT(δα)/α. (12)
Moreover, if we set α = (n −
1)/εL, and denote by P ′

α a maxi-
mum delay path in Tα for δ, we have

δ(Tα) =
∑

e∈E(P ′
α)

δ(e)

<
1
α

∑
e∈E(P ′

α)

(δα(e) + 1) (13)

≤ 1
α
|E(P ′

α)|+ 1
α

∑
e∈E(P ′

α)

δα(e)

≤ n− 1
α

+
1
α

∑
e∈E(Pα)

δα(e)

= εL +
1
α

OPT(δα)

≤ εL + OPT(δ) (14)
≤ (1 + ε)OPT(δ),

Input a series-parallel graph G′,
s ∈ V (G′), D ⊆ V (G′),
γ′ : E(G′) → N, δ′ : E(G′) → N,
Γ ∈ Z+, ε > 0.

Output a multicast tree T with cost
at most Γ and delay at most (1+
ε)OPT(δ′).

begin
Ext(G′, γ′, δ′);
Comp UL(G, s, D, γ, δ, Γ);
α := (n− 1)/εL;
δα(e) := $αδ(e)% ∀e ∈ E(G);
Δα := αU ;
BA(G, s, D, γ, δα, Δα);
Min Delay(Γ,W(r, C(r)));
MT(G, s, D, γ, δα, Δα, ξ);
return T ;

end

Fig. 3. Algorithm 3

Cost-Constrained Minimum-Delay Multicasting 339

where inequality (13) and (14) follow from (11) and (12), respectively.
Thus, we conclude that Algorithm 3 shown in Fig. 3 is an FPTAS for

CCMDMT. Since Δα = (n − 1)U/εL = O(n2/ε), we have the following by
Theorem 2.

Theorem 5. For a series-parallel graph G with n vertices and a non-negative
integer Δ, Algorithm 3 computes a (1 + ε)-approximate solution for CCMDMT
in O(n log n + n7/ε3) time. ��

Finally, it should be noted that our method to obtain FPTAS for CCMDMT
cannot apply to DCMCMT in a straightforward way, since Δ can be exponen-
tially large.

References

1. Chan, G., Xue, G.: k-pair delay constrained minimum cost routing in undirected
networks. ACM-SIAM Symposium on Discrete Algorithms (2001) 230–231

2. Kompella, V., Pasquale, J., Polyzos, G.: Multicast routing for multimedia com-
munication. IEEE/ACM Transactions on Networking 1 (1993) 286–292

3. Parsa, M., Zhu, Q., G.-L.-Aceves, J.J.: An iterative algorithm for delay-constrained
minimum-cost multicast. IEEE/ACM Trans. Networking 6 (2001) 213–219

4. Sriram, R., Manimaran, G., Murthy, C.: Algorithms for delay-constrained low-cost
multicast tree construction. Computer Communications 21 (1998) 1693–1706

5. Youssef, H., A.-Mulhem, A., Sait, S., Tahir, M.: QoS-driven multicast tree gener-
ation using tabu search. Computer Communications 25 (2002) 1140–1149

6. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math-
ematics of Operations Research 17 (1992) 36–42

7. Chen, G., Xue, G.: A PTAS for weight constrained steiner trees in series-parallel
graphs. Theoretical Computer Science 304 (2003) 237–247

8. Wald, J., Colbourn, C.: Steiner trees, partial 2-trees and minimum IFI networks.
Networks 13 (1983) 159–167

9. Lorenz, D., Raz, D.: A simple efficient approximation scheme for the restricted
path problem. Operations Research Letters 28 (2001) 213–219

10. Warburton, A.: Approximation of pareto optima in multiple-objective shortest
path problems. Operations Research 35 (1987) 70–79

Ontology-Based Inconsistency Management of
Software Requirements Specifications

Xuefeng Zhu1,2 and Zhi Jin1,3

1 Institute of Computing Technology, Chinese Academy of Sciences, P.O.Box 2704
Beijing 100080, People’s Republic of China

2 Graduate School of the Chinese Academy of Sciences, Beijing 100080, People’s
Republic of China

3 Academy of Mathematics and System Sciences, Chinese Academy of Sciences,
Beijing 100080, People’s Republic of China

zhuxuefeng@ict.an.cn

Abstract. Management of requirements inconsistency is key to the de-
velopment of trustworthy software systems. But at present, although
there are a lot of work on this topic, most of them are limited in treating
inconsistency at the syntactic level. We still lack a systematical method
for managing requirements inconsistency at the semantic level.
This paper first proposes a requirements refinement model, which sug-
gests that interactions between software agents and their ambiences are
essential to capture the semantics of requirements. We suppose that the
real effect of these interactions is to make the states of entities in the
ambiences changed. So, we explicitly represent requirements of a soft-
ware agent as a set of state transition diagrams, each of which is for one
entity in the ambiences. We argue that, based on this model, the mech-
anism to deal with the inconsistency at the semantic level. A domain
ontology is used as an infrastructure to detect, diagnose and resolve the
inconsistency.

1 Introduction

Inconsistency is inevitable in software requirements specifications. How to handle
inconsistency in requirements specifications is key to the development of trust-
worthy software systems[1]. But at present, although there are a lot of work[1][2]
on inconsistency management, we still lack of systematical method for managing
requirements inconsistency at the semantic level.

How to formulate the requirements inconsistency? Based on B.Nuseibeh’s
original definition[3], G.Spanoudakis gave a more formal one[2]: ”Assume a set
of software model S1, . . . , Sn, the set of overlap relations between them Oa(Si, Sj)
(i, j=1,. . . ,n), a domain theory D, and a consistency rule CR, S1, . . . , Sn will be
said to be inconsistent with CR given the overlaps between them as expressed
by the sets Oa(Si, Sj) and the domain theory D if it can be shown that the rule
CR is not satisfied by the models.”

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 340–349, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Ontology-Based Inconsistency Management 341

As for inconsistency management, B.Nuseibeh also proposed a framework[1],
which has been widely accepted. Centering to this framework is the set of consis-
tency checking rules, which express properties that software models should hold.
Main activities in this framework include detection, diagnosis, treatment,handle,
etc. . .

Following this framework, lots of work, mainly on inconsistency detection,
have been done. Firstly, as we know, the prerequisite of requirements inconsis-
tency is that there exists denotational overlaps between requirements statements.
At present, the detection methods of denotational overlaps fall into four kinds
ranked by their automation and intelligence. They are the human inspection of
M.Jackson[4], the shared ontology based method of Z.Jin[5], the representation
convention of V.Lamsweerde[6], and the similarity analysis of G.Spanoudakis[7].
Secondly, inconsistency detection methods differ from each other because of the
difference requirements representation schemes. V.Lamsweerde[6] used the theo-
rem provers to check consistency of their logic-based specifications. C.Heimeyer[8]
used the model checker to find inconsistency in their automata-based specifica-
tions. S.Clarke[9] checked inconsistency of their graph-based specifications in
terms of special properties or semantics of the graph. V.Lamsweerde[6] adopted
human collaboration technique to assist inconsistency detection. And finally,
V.Lamsweerde[6] solved inconsistency by using heuristic rules.

Managing the inconsistency in requirements is key to the development of the
trustworthy software systems. But at present, although there are a lot of work
on this topic, most of them are

limited in treating inconsistency at syntactic level. We still lack a promising
method for managing requirements inconsistency at semantic level. This paper
first proposes a requirements refinement model, which suggests that interactions
between software agents and their ambiences are essential to capture the seman-
tics of requirements. We suppose that the real effect of these interactions is to
make the states of entities in the ambiences changed. We argue that, based on
this model, the proposed mechanism to deal with the inconsistency at the seman-
tic level. A domain ontology then is used as infrastructure to detect, diagnose
and resolve inconsistency.

The paper is structured as follows. In section 2, a requirements refinement
process is proposed which act as a reference model for requirements engineer-
ing. In section 3, a state transition model is proposed as a schema to represent
interactions between software agents and their ambiences. In section 4, an inno-
vative framework based on above two points is proposed to handle inconsistency
at semantic level. Section 5 summarizes our work. An example from London
Ambulance Service[10] has been used to validate our method.

2 Process for Refining Requirements

To further grasp the essence of requirements inconsistency, we need begin with
the process of requirements capture and requirements refinement. Suppose we
take software system as an agent and real world entities outside this agent as

342 X. Zhu and Z. Jin

its ambience, then external requirement is observations that agent perceives
related to it and relations among these observations. Internal structure which
corresponding to external requirement consists of a group of subsystems and
constraints among these subsystems, these subsystems act as realization of ex-
ternal requirement. Thus system requirements can be represented as a tuple
which consists of external requirements and internal requirements.

As we can see, software requirements are based on external requirements.
However, in terms of the development method and the decomposition of the sys-
tem, we can get its internal structure. Requirements which has internal structure
are called decomposable, otherwise they are called atomic. Refinements process
of decomposable software requirements can be represent as a requirements refine-
ment tree. There we can give the structural definition of software requirements:

Definition 1. External requirements of a software system S can be represented
as a triple ExReq=< Amb, Obv, Rel >

1. Amb = {amb1, amb2, · · · , ambn} is a set of all ambiences that interact with S,
ambi(i = 1, 2 · · · , n) can be an entity, a human being or another software system
of the real world;
2. Obv ⊆ ({S} × Ph → Amb) ∪ (Amb × Ph → {S})is a set of observations
which occur between ambiences and S, Ph = {ph1, ph2, · · · , phm} is a set of
phenomena. Any obv ∈ Obv indicates that S generate a phenomenon to one of
its ambience or one ambience of S generates a phenomenon to S;
3. Rel ∈< (Obv, Obv) ∪ +(Ph, Ph), < indicates only a caused sequence between
two observations, + indicate not only a caused sequence but also a special domain
relation that two observations should satisfy.

+ in above definition represents Input → Output functional abstraction of
the software system. We need not qualify properties of phenomena. They can
be any perceivable phenomena between the real world and the software system.
This definition reveals that requirements stimulate the context of the expected
software system in its future ambience. However, for a complex software sys-
tem, such requirements description may be insufficient for implementing. For
this kind of systems, the process of requirements refinement is stepwise decom-
position of requirements, until we get a set of requirements, each of which can
be implemented directly.

Definition 2. Suppose the external requirements of system S is ExReq =<Amb,
Obv, Rel> and S is decomposable, then InReq=<Sub, Ass, InObv, InRel> is the
internal structure of S, in which
1. Sub = {S1, S2, · · · , Sn} is the set of all subsystems of S;
2. Ass ⊆ Obv(S) → PSub is the realization of external interaction of S. It shows
that each external observation of S can be implemented by a group of subsystems;
3. InObv ⊆ (Sub× Ph → Sub) are observations about interactions among sub-
systems of S. They are the internal observations of S;
4. InRel ⊆< (InObv, InObv) ∪ +(Ph, Ph) contains the relations among the
internal observations, < and + have the same meaning as above.

Ontology-Based Inconsistency Management 343

Decomposability can be seen as projection or decomposition. They are two
basic principles of requirements engineering. Based on above definitions, we
can draw the conclusion that construction process of requirements specification
is the requirements refinement process. This refinement process can be repre-
sented as a finite tree RefiningTree(S), its root is < ExReq(S), InReq(S) >,
other nodes in the tree can unify be represent as < ExReq(Si1 , Si2 , · · · , Sik

),
InReq(Si1 , Si2 , · · · , Sik

) > (i1, i2, · · · , ik = 1, 2, 3, · · ·). All nodes with InReq(Si1 ,
Si2 , · · · , Sik

) = NULL are leaf node of RefiningTree(S).

Definition 3. Assume that T is a requirements refinement tree of a software
system S. Every node in T has tangent plane. A set is called a tangent plane of
T if it contains and only contains the following elements:
1. If a is a leaf node in T then TangentP lane(a) = {a};
2. If a is an AND node, and has sub node a1, a2, · · · , am, then TangentP lane(ai) ∈
TangentP lane(a);
3. If a is an OR node, and has sub node a1, a2, · · · , am, then there exists only
one ak, TangentP lane(ak) ∈ TangentP lane(a); (1 ≤ k ≤ m, i = 1, 2, · · · , m)

From above definitions, we can give an abstract definition of requirements
specification in the process of requirements refinement.

Definition 4. Any tangent plane TangentP lane(T) of requirements refinement
tree T of software system S is a specification of S in certain stage of the require-
ments refinement process.

Ambulance
Agent

Staff Agent

Reporter
Agent

Dispatch

Report

Ambience
Agent

London Ambulance
Service Agent

Dispatch Agent

Ambulance
Dispatch

Agent

Staff
Dispatch

Agent

Report Agent

Report
Location

Report
Type

Fig. 1. Agent Hierarchical

1: London
Ambulance

Service

2: Report
System

4:
Location
Report

7: Ambu
lance

Dispatch

3: Dispatch
System

5: Type
Report

6: Staff
Dispatch

Fig. 2. Requirements Refinement Tree

For example, figure 1 is the agent hierarchical structure of LAS system, and
figure 2 is corresponding requirements refinement tree of figure 1. The top level
agent in figure 1 is LAS agent, and the ambience agent which can be decomposed
into Ambulance, Staff and Reporter. The interactions between LAS agent and
its ambience include dispatch and report. Figure 2 shows the decomposition of
LAS agent, in which node 3 is an OR node and the others are AND nodes.
This refinement tree has tangent planes such as {1},{2, 3},{2, 6},{3, 4, 5},etc. . . .
Every tangent plane is a description of LAS of particular granularity.

344 X. Zhu and Z. Jin

3 State Transition Model

According to the requirements refinement process, software requirements consist
of the external requirements which shows the system as an integrity and the
internal structure which represents internal system decomposition.

The entities outside of the software system constitute its ambiences. We argue
that the real effect of interactions between software system and its ambiences is
to make the state of the entities in ambiences changed. So, we explicitly represent
requirements of a software system as a set of state transition diagrams, each of
which is for one entity in the ambiences. We can get the following definition for
state transition of entity in ambience, which can then be used as a description
schema for entity ontology.

Definition 5. The state transition model which express the interactions between
the software system and its ambience can be represented as M =< S, E, T, S0 >

1. S= {s0, . . . , sn} is the set of entity states in ambience;
2. E= {e0, . . . , em} is the set of events related to entity state transition, ;
3. T is the set of the state transitions in ambience. For each t∈T, t=< ss, st, et >,
in which ss is the source state of t, St is the target state of t, et is the event
which causes the state transition.
4. S0 ⊆ S is the set of the initial states of entity.

4 Inconsistency Management

In this section, we propose an innovative framework based on above two model
for managing requirements inconsistency at semantic level, which include the
operable definition, the requirements representation, the denotational overlap
detection, the inconsistency detection, the inconsistency measurement and the
resolve strategies.

4.1 Operable Definition

M.Jackson suggests that software engineering is a subject of description[4]. From
the viewpoint of ontology, any domain model consists of concepts, relations be-
tween the concepts and constraints which should be satisfied. Since requirements
specification is a kind of model of the problem to be solved, it also consists of
the above three elements. So, we can give the following definition for software
requirements inconsistency:

Definition 6. Assume that T is a requirements refinement tree of software sys-
tem, TangentPlane(T)={< ExReq(S1), . . . >, . . . ,< ExReq(Sn), . . . >} is a
tangent plane of T, and CR is a consistency checking rule, then
1. If there exists ExReq(Si), DS1 and DS2 are two homogeneous specification
elements in it and have overlap relation o. If we can prove that CR is not sat-
isfied by ExReq(Si)/{DS/DS1, DS/DS2}, then we can say that at given over-
lap o, ExReq(Si) is inconsistent allowing for CR. Here DS is a new name in
ExReq(Si) and i = 1, 2, · · · , n;

Ontology-Based Inconsistency Management 345

2. If there exists ExReq(Si) and ExReq(Sj), DS1 and DS2 are corresponding
specification elements in them and have overlap relation o, if we can prove that
CR can not be satisfied by ExReq(Si) ∪ExReq(Sj)/{DS/DS1, DS/DS2}, then
we can say that at given overlap relation o, ExReq(Si) ∪ExReq(Sj) is inconsis-
tent allowing for CR. Here, DS is a new name in ExReq(Si) ∪ExReq(Sj) and
i, j = 1, 2, · · · , n, i �= j;
3. If we can prove that CR can not be satisfied by ExReq(S1)∪· · ·∪ExReq(Sn),
then we can say ExReq(S1) ∪ · · · ∪ExReq(Sn) is inconsistent allowing for CR.

4.2 Requirements Representation

Software requirements consist of the external requirements which represent the
interactions between the software system and its ambiences, and the internal
requirements which represent the internal structure of the system. We assume
that entities in ambience have finite states. These entities can transit from one
state to another triggered by events. So, we can represent software requirements
as: Requirements :=< Name, Ambience, Structure, Event >.

Software requirements specification as above can be obtained by stepwise
system decomposition. Ambience includes all relevant entities outside of this
system. Structure relies on Ambience and the software system. Event include a
set of event which cause entity transit from one state to another.

For example, reporter agent’s requirements of reporting an accident to ac-
cident controller room can be represented as: <accident agent, {ambulance,
driver}, {report system}, {reporter} >.

4.3 Denotational Overlap Detection

Denotational overlaps are prerequisite of requirements inconsistency. But multi-
ple requirements descriptions usually can not be comparable. That is one of the
main reasons why inconsistency is so difficult to deal with.

Shared ontology can be used as a translator among different requirements
descriptions. Software requirements rely on its ambience, owing to the difference
of its ambience, any requirements description can be seen as a positive projection
of the system being described on shared ontology. Only when all description
elements can be mapped onto shared ontology will it be possible that different
description elements or different descriptions be comparable.

Given the requirements specification representation schema above, two speci-
fications are said to have denotational overlap if and only if their ambiences have
some common entities, and the event sequence can make these entities transit to
common state. The following is an algorithm to detect the denotational overlap.

Algorithm 1. Given requirements specifications spe1 and spe2 which have rep-
resentation scheme of Agent-Ambience interaction:
1. Mapping spei and all its ambiences onto shared ontology, spei; = project
(spei, SharedOntology)(i = 1, 2);
2. If amb1 ∩ amb2 = φ, then spe1 and spe2 have no denotational overlap;

346 X. Zhu and Z. Jin

3. If amb1 ∩ amb2 �= φ and entity1 ∩ entity2 = φ, then spe1 and spe2 have no
denotational overlap;
4. We assume stateseqi is state transition sequence of entityi(i = 1, 2), if
stateseq1 ∩stateseq2 = φ, then there is no denotational overlap, otherwise spe1
and spe2 have denotational overlap which is < entity, stateseq1 ∩ stateseq2 >.

For example, driver and reporter requirements of dispatching ambulance have
the same ambience {ambulance}, and event of driver and reporter contain a
same state {<ambulance, ready>}, thus they have denotational overlap which
is <ambulance, {<ambulance, ready>} > .

4.4 Inconsistency Detection

Given software requirements specifications and consistency checking rule CR,
we call that specifications are inconsistent if entities in ambience transit to a
contradictory state which CR states that it should not reach. Based on the state
transition model and the requirements representation, we have the following
definition for detecting requirements inconsistency:

Definition 7. Given two requirements specifications spe1 and spe2. amb1 and
amb2 are corresponding ambiences. eventseq1 and eventseq2 are corresponding
event sequences. If amb1∩amb2 �= φ, then if ∃entity ∈ (amb1∩amb2), such that
the sets of states that eventseq1 and eventseq2 act upon this entity are stateset1
and stateset2, if ∃state ∈ (stateset1∩stateset2), (state1 ∈ stateset1)∩(state2 ∈
stateset2)∩(state1∩state2 , False), then we call spe1 and spe2 are inconsistent.

No Driver
1: Nearest

Ambulance

4: Can Not
Dispatching

3: No
Function

2:
Unavailable

1: Nearest
Ambulance

2:
Dispatch

No Nurse

Fig. 3. State Transition Graphs

For example, Figure 3 contains two state transition graphs. The first one
expresses the accident controller’s view. It says that if an ambulance has no
operator in it, then it should not dispatch to the accident spot. This rule can
be represented as CTL formula: AG(ambulance.state = nooperator → AF (¬
ambulance.state = dispatch)). On the other hand, the second graph captures
the reporter’s view. It says that under such condition, the nearest ambulance
should be dispatched to that spot unconditionally. Thus we can see that the
accident reporter’s requirements is inconsistent with the domain rule.

Ontology-Based Inconsistency Management 347

4.5 Inconsistency Measurement

From the requirements refinement model, we can see that inconsistency manage-
ment of software requirements can be equal to the inconsistency management of
the tangent planes of requirements refinement tree. Inspired by irregular knowl-
edge processing, we can give an abstract model for inconsistency reduction.

Definition 8. If we take specifications in the requirements refinement tree as a
formula set R, if⋂
r∈R

r , False and SR = {R′|
⋂

r∈R′
r , True, ∀t ∈ R−R′, {t}∩ (

⋂
r∈R′

r) , False},

then we call each R′ ∈ SR is a maximal consistency subset of R.

Suppose we assign different factor to formulas according to their importance,
then SR’={R′|R′ ⊆ SR and weight(R′) = maximal} contains all the consis-
tency subsets that have maximal benefit, and (weight(R)-weight(R’))/weight(R)
can be used to estimate severe degree of inconsistency.

Definition 9. If we take specifications in the requirements refinement tree as a
formula set R, if⋂

r∈R

r , False and SR′ = {R′|
⋂

r∈R′
r , False,∀t ∈ R′, (

⋂
r∈R′−{t}

r) , True},

then each R′ ∈ SR′ is a minimal inconsistency subset of R.

Theorem 1. Assume formula s belongs to k minimal inconsistency subsets of
R, then number of minimal inconsistency subset in R-{s} is |SR′|-k.

Proof. According to above definition, number of minimal inconsistency subset
in R is |SR′|. while (1)reduce a formula in R will not increase the number of
minimal inconsistency subset; (2) if s not belongs to any minimal inconsistency
subset S ⊆ R, then reduce s in R will not influence inconsistency of S. So the
number of minimal inconsistency subset in R-{s} is |SR′|-k.

Let s1=s and k1=k, if R-{s1} still is inconsistent, then we can take formula s2
in one of the minimal inconsistency subsets of R-{s1}, and that s2 is contained
in k2 minimal inconsistent subsets,. . . . If after reducing m formulas, we can get
formula set that no longer inconsistent, then we have

∑m
i=1 ki = |SR′|.

Definition 10. We call each formula in the minimal inconsistency set a con-
flicting point, if a formula contained in k minimal inconsistency sets, then we
call this formula a k-folds conflicting point.

Definition 11. We call sequence S=(s1, s2, . . . , sm) a conflicting point sequence
of R if
1. s1 is a conflicting point of R;
2. ∀j < m, we have already reduced (s1, s2, . . . , sj), but sj+1 still is a conflicting
point of R-{s1, s2, . . . , sj}.

348 X. Zhu and Z. Jin

The severe degree of inconsistency caused by conflicting point s in R can
be calculated as Impact(R,s)=(Weight(R)-Wight(R-{s}))/weight(R). The severe
degree of inconsistency caused by conflicting point sequence S=(s1, s2, . . . , sm)
in R can be calculated as Impact(R,S)=(weight(R)-weight(R-(s1, s2, . . . , sm)))
/weight(R). And if sj is the j-th conflicting point of conflicting point sequence
S=(s1, s2, . . . , sm), then conditional inconsistency caused by sj is Impact(R,
sj/(s1, s2, . . . , sj−1))= Impact(R, {s1, s2, . . . , sj−1})-Impact(R, {s1, s2, . . . , sj}).

4.6 Inconsistency Resolution

The aim of inconsistency management is to eliminate the influence of inconsis-
tency. However we need not eliminate inconsistency directly. According to the
severe degree of inconsistency, there are two kinds of actions for solving incon-
sistency.

Pattern Matching. Most work on inconsistency resolution use heuristic rules
to find the most appropriate actions that might be taken. These heuristic rules
can be used in generalizing the inconsistency handling patterns. The following
is a semantic matching algorithm:

Algorithm 2. Given an inconsistent state transition graph G, a set of incon-
sistency handling pattern P={P1, P2, . . . , Pk} and a threshold v:
1. Assign zero to j, and assign v to min, min is minimal semantic distance and
j indicate the number of pattern that most appropriate to G;
2. For i:=1 to k do {Di := distance(G, Pi); if min> Di then min:=Di and
j:=i}, distance(G1, G2) is a function that calculates the semantic distance of two
graphs;
3. If distance(G, Pj) < v then Pj is the pattern that most appropriate to handle
G, otherwise there are no existing pattern that can handle G;

Requirements Distribution. As to the inconsistency that can not be solved
by the pattern matching, we can distribute requirements according to ambiences.
So that we can keep internal consistency of each requirements set. Referring to
CYC program and microtheory architecture for knowledge organization, we can
give the following algorithm for tolerating inconsistency:

Algorithm 3. Given leaf requirements node N in requirements refinement tree
T, {R1, R2, . . . ,Rn} are formulas in N, we can get the following consistency
subset N’.
1. For i:=1 to n do {consistencychecking(Ri), if ¬consistent(Ri) then we need
partition Ri into subformulas that are consistent and add them in formula subset
of N’, number of formulas in N’ is n’}
2. Divide N’ into subset N ′

1, . . . , N
′
m(m < n),

⋃m
i=1 N ′

i = N ′ and N ′
i ∩N ′

j = φ,
every N ′

i is internal consistent (i,j=1,2,. . .,m; i�=j), and m is minimal;
3. Generate m node which contain formula set N ′

i(i = 1, . . . , m), and generate
an AND node which pointing to these m sub nodes and replace node N with it.

Ontology-Based Inconsistency Management 349

5 Conclusions

Based on the requirements refinement model, this paper takes domain ontology
as infrastructure to manage inconsistency at semantic level. The main contri-
butions of this paper include the following points:(1)software requirements can
be seen as interactions between software agents and their ambiences;(2)software
requirements can be represented as a set of state transition diagrams of entities
in the ambiences;(3)an ontology-based inconsistency management framework for
handling inconsistency at semantic level.

Acknowledgement

This work is partly supported by the National Natural Science Key Foundation
of China under Grant No.60233010, and Grant No.60496324, the National Key
Research and Development Program under Grant No.2002CB312004, the Knowl-
edge Innovation Program of the Chinese Academy of Sciences, and MADIS of
the Chinese Academy of Sciences.

References

1. B.Nuseibeh, S.Easterbrook and A.Russo: Leveraging Inconsistency in Software De-
velopment. IEEE Computer, 2000, Vol.33, No.4, 24-29

2. G.Spanoudakis, A.Zisman: Inconsistency Management in Software Engineering:
Survey and Open Research Issues. In S.Chang(ed), Handbook of Software Engi-
neering and Knowledge Engineering, World Scientific Publishing Co. 2001, 329-380

3. B.Nuseibeh: To be and not to be: On managing inconsistency in software develop-
ment. In Proceedings of the 8th International Workshop on Software Specification
and Design, Germany, 1996, 164-169

4. M.Jackson: The meaning of Requirements. Annuals of Software Engineering, 1997,
Vol.3, 5-21

5. Z.Jin, R.Lu and D.Bell: Automatically MultiParadigm Requirements Modeling and
Analyzing: An Ontology-Based Approach. Science in China(Series F), 2003, Vol.46,
No.4, 279-297

6. V.Lamsweerde, R.Darimont and E.Letier: Managing Conflict in Goal-Driven Re-
quirements Engineering. IEEE Transactions on Software Engineering, 1998, Vol.24,
No.11, 908-926

7. G.Spanoudakis and A.Finkelstein: Reconciling Requirements: A Method for Man-
aging Interference, Inconsistency and Conflict. Annuals of Software Engineering,
1997, Vol.3, 433-457

8. C.Heitmeyer, R.Jeffords and D.Kiskis: Automated Consistency Checking Require-
ments Specifications. ACM Transactions on Software Engineering and Methodlogy,
1996, Vol.5, No.3, 231-261

9. S.Clarke, J.Murphy and M.Roantree: Composition of UML Design Models: A Tool
to Support the Resolution of Conflicts. In Proceedings of the International Con-
ference on Object-Oriented Information Systems, Springer Verlag, 1998, 464-479

10. A.Finkelstein and J.Dowell: A Comedy of Errors: The London Ambulance Ser-
vice Case Study. In Proceedings of the 8th International Workshop on Software
Specification and Design. IEEE Computer Society Press, 1996, 2-4

Suffix Tree Based Data Compression

Martin Senft

Faculty of Mathematics and Physics, Charles University,
Malostranské náměst́ı 25, 118 00 Praha, Czech Republic

senft@atrey.karlin.mff.cuni.cz

Abstract Suffix tree is a widely studied data structure with a range
of applications. Although originally developed for string matching algo-
rithms, it has proved to be useful for implementation of various lossless
data compression methods. This interesting fact inspired us to explore
the possibilities of creating new data compression methods, based en-
tirely on properties of suffix trees. Resulting from a thorough study of
existing suffix tree construction algorithms and their modifications, we
propose and evaluate several variants of suffix tree based compression.

1 Introduction

Suffix tree is a widely studied data structure with a range of applications. Al-
though originally developed by Weiner [1] for text indexing in string matching
algorithms, it has also proved as useful for the data compression. The most
prominent lossless data compression algorithms, including the Burrows-Wheeler
Transform [2], PPM [3] and ZL77 [4] methods are based on different ideas, but
still have one thing in common: a suffix tree can be used for their implementa-
tion. This interesting fact inspired us to explore the possibilities of creating new
data compression methods, based entirely on properties of suffix trees. Resulting
from a thorough study of existing suffix tree construction algorithms [1, 5, 6, 7]
and their modifications [8, 9], we propose several variants of suffix tree based
compression and compare them to existing compression methods on a standard
text corpus.

This paper is organised as follows: The next section summarises some neces-
sary notation and terminology, leading to the definition of a suffix tree. Section 3
reviews two classical suffix tree construction algorithms. Our main contribution
is in Sect. 4, where the idea of the Suffix Tree Compression (STC) is described
and developed to create a class of new methods. The next two sections are de-
voted to implementation and evaluation of two selected methods. We conclude
the paper with final remarks and suggestions for future development in Sect. 7.

2 Concepts and Notation
2.1 Notation

Alphabet is a nonempty finite set, its elements are characters and any sequence
δ of n characters is a string of length |δ| = n. If n = 0, δ is an empty string,
denoted by λ. Σ∗ is a set of all strings over alphabet Σ and Σ+ = Σ∗ − {λ}.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 350–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Suffix Tree Based Data Compression 351

Let α, β ∈ Σ∗, where α = a1a2 . . . am and β = b1b2 . . . bn, then αβ =
a1 . . . amb1 . . . bn denotes the concatenation of α and β. If δ = αβγ, then α,
β and γ are called prefix, factor and suffix of string δ, respectively. The sets of
all prefixes, factors and suffixes of a string δ are denoted in order by Prefix(δ),
Factor(δ) and Suffix(δ).

The i-th character of string δ is denoted by δ [i] for 1 ≤ i ≤ |δ|. The string
δ [i] δ [i + 1] . . . δ [j], where 1 ≤ i ≤ j ≤ |δ|, is denoted by δ [i : j]. It is convenient
to have δ [i : j] = λ for i > j. Let α ∈ Σ∗, if there exists i, j such that α = δ [i : j],
then α is said to occur at position i in δ. If α ∈ Factor(δ) occurs only once in δ, it
is called unique. The set of all unique suffixes of δ is denoted by UniqueSuffix(δ).

Further on, all characters and strings are taken from Σ and Σ∗ and denoted
by latin and greek characters, respectively.

2.2 Strings

Definition 1. Let δ ∈ Σ∗ and α ∈ Factor(δ), then α is right branching in δ if
there exist characters a �= b, such that αa, αb ∈ Factor(δ). We denote the set of
all strings that are right branching in δ by BranchR(δ).

Right branching factors of δ are strings that occur at least twice in δ and two of
these occurrences are followed by two different characters.

Definition 2. Let δ ∈ Σ∗. For any α ∈ Factor(δ), we define
δ=⇒
α as follows:

δ=⇒
α =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ α = λ

α α ∈ BranchR(δ)
α α ∈ UniqueSuffix(δ)

δ=⇒
αa , where a ∈ Σ and αa ∈ Factor(δ) otherwise .

The set
{

α

∣∣∣∣ δ=⇒
α = α

}
is denoted by ProperL(δ).

Less formally,
δ=⇒
α is the string obtained by appending characters to α until we

get a unique suffix of δ or a right branching factor of δ.

2.3 Suffix Trees

Here we define the suffix tree data structure using the standard graph terminol-
ogy (cf. [10]) with one simplification: vertices of a tree that are not leaves are
called nodes. The suffix tree is defined as an edge-labelled graph (V, E), where
V is a set of vertices and E ⊆ V × Σ+ × V is a set of edges. The second edge
component is its label.

Definition 3. Let δ ∈ Σ∗. STree(δ) is an edge-labelled graph (V, E), where

V =
{
α

∣∣α ∈ ProperL(δ)
}

,

E =
{

(α, aβ, γ)
∣∣∣∣α, γ ∈ V and

δ=⇒
αa= αaβ = γ

}
.

The edge (α, aβ, γ) is called an a-edge from α to γ of length |aβ|.

352 M. Senft

It is easy to see that STree(δ) is really a tree. We generally root it at λ.

Definition 4. A location of α ∈ Factor(δ) in STree(δ) is a pair (β, γ), where
β is an STree(δ) node and α = βγ. Locδ(α) is the set of all locations of α and
the canonical location of α, denoted by CanonLocδ(α), is its member with the
shortest γ.

Let CanonLocδ(α) = (β, γ). If γ = λ, then we say that α is located in the
node β. Otherwise, α is said to be located on the edge (β, γη,ϕ) at position γ.
On the other hand, all nodes and positions on edges represent some string α
and its length defines the depth of such location. Note that we can canonise any
location of α to obtain CanonLocδ(α) by following some edges down from β.

3 Suffix Tree Construction

This section describes two linear time suffix tree construction algorithms due to
McCreight [5] and Ukkonen [6].

3.1 Ukkonen’s Algorithm

Ukkonen’s algorithm works on-line, e.g. it constructs STree(δa) directly from
STree(δ). The sets of vertices of these trees are ProperL(δ) and ProperL(δa),
respectively, and contain λ, all right branching factors and all unique suffixes.
Clearly, all right branching factors of δ are also right branching in δa, but many
unique suffixes of δ may not be suffixes of δa at all. However, all changes to the
set of vertices come from the suffixes of δ, which we divide into the following
groups:

1. α ∈ UniqueSuffix(δ),
2. α �∈ UniqueSuffix(δ) and αa ∈ UniqueSuffix(δa),

(a) α /∈ BranchR(δ),
(b) α ∈ BranchR(δ),

3. α �∈ UniqueSuffix(δ) and αa �∈ UniqueSuffix(δa).

Note that all suffixes shorter (longer) than a right branching (unique) one,
must also be right branching (unique). Consequently, suffixes are split into these
groups according to their lengths. The longest suffix (i.e. δ) is unique, the short-
est suffix (i.e. λ) is generally non-unique and right branching, and all suffixes
in group 3 are right branching. The longest non-unique (repeated) suffix of δ
(i.e. the longest suffix not in group 1) is denoted by LRS(δ). The following list
summarises contribution of each group to BranchR(δa) and UniqueSuffix(δa):

1. αa ∈ UniqueSuffix(δa) and α �∈ BranchR(δa),
2. αa ∈ UniqueSuffix(δa) and α ∈ BranchR(δa),
3. αa �∈ UniqueSuffix(δa) and α ∈ BranchR(δa).

Suffix Tree Based Data Compression 353

We transform STree(δ) to STree(δa) by doing the following in each suffix group:

1. Suffixes in this group are leaves and every leaf α is replaced by a leaf αa and
its incoming edge by an edge to αa with a appended to its label.

2. For each α in this group a new leaf αa and edge (α, a, aα) are created. In
case 2a, the edge (β, γϕ, η), where α is located, is split into edges (β, γ, α)
and (α, ϕ, η) and node α is created.

3. Nothing to do.

Case 1 can be solved by an implementation trick of so called “open edges” (see
[6] for details). Case 2 appears to be quite simple, however, we have to find all
suffixes in this group somehow. To do this fast, we augment the suffix tree with
auxiliary edges called suffix links (introduced by Weiner [1]) and one auxiliary
node called nil, denoted by ⊥. Modified suffix tree definition follows:

Definition 5. Let δ ∈ Σ∗. STree(δ) is an edge-labelled graph (V, E), such that

V =
{
α

∣∣α ∈ ProperL(δ)
}
∪ {⊥} ,

E =
{

(α, aβ, γ)
∣∣∣∣α, γ ∈ V and

δ=⇒
αa= αaβ = γ

}
∪

∪NilEdges ∪ SuffixLinks (δ) , where
NilEdges = {(⊥, a, λ) | a ∈ Σ } and

SuffixLinks (δ) =
{

(aα, λ, α)
∣∣∣α, aα ∈ BranchR(δ)

}
∪ {(λ, λ,⊥)} .

Members of NilEdges and SuffixLinks (δ) are called nil edges and suffix links,
respectively.

It is convenient to denote CanonLocδ(α [2 . . . |α|]), i.e. the canonical loca-
tion of the longest suffix of α different from α, by SuffixLocδ(α). Note that
SuffixLocδ(α) may be obtained from (β, γ) = CanonLocδ(α) easily by following
the suffix link (β, λ, η) and then canonising location.

All we have to do to transform STree(δ) to STree(δa) is to follow the so called
active point (AP) and make the necessary changes:

1. At the beginning, AP is equal to CanonLocδ(LRS(δ)).
2. While AP (= (β, γ)) is not the location of the longest suffix in group 3

(a) If the last step created a new node, add a suffix link from this node to
the node AP is in or the node that will be created in 2b.

(b) Make the changes required for this suffix in group 2.
(c) Set AP to SuffixLocδ(βγ). This is called the sideways movement of AP.

3. Set AP to (β, γa) and canonise.

3.2 McCreight’s Algorithm

McCreight’s and Ukkonen’s algorithms only group the same steps differently.
Ukkonen’s algorithm proceeds “character by character”, while McCreight’s al-
gorithm builds the tree “unique suffix by unique suffix” and only the first and

354 M. Senft

the last tree in the building process are guaranteed to be suffix trees. It reads
characters and moves AP down as long as possible, then it makes the changes
necessary to add a new leaf for the new unique suffix, moves AP sideways and
reads characters again. This way it adds a new unique suffix in each step.

4 Suffix Tree Based Data Compression

While other authors [8, 9, 11] employ the suffix tree as a suitable data structure
for implementation of existing compression methods, we explore the possibility
of an opposite approach. Our goal is to design a brand new algorithm, based
entirely on properties of suffix trees. We follow the strategy of constructing
a suffix tree for the data to be compressed and storing the decisions made while
doing so. The original data can be reconstructed later from that information.

4.1 The General Idea

When constructing STree(δ), the two algorithms of Sec. 3 follow the active point.
AP’s movement through the tree is given by the string δ, on the other hand, the
movement of AP in the tree fully describes δ. It can be reconstructed as follows:
For every single character of δ, AP is moved down either immediately or after
a few sideways moves. So, we either already know the character and can write
it down or just wait until AP is moved down again.

4.2 Describing the AP Movement

Now, when we know that AP movement alone suffices for the original string
reconstruction, a way to save it is needed. There are basically two ways to
describe AP movement: the absolute and the relative.

Absolute Description. Two of many possible ways are:

1. If the downward movement stopped in a node, the node id is saved. If it
stopped on an edge, then the id of the second edge vertex together with
another value describing the actual location on the edge is saved. This may
be the distance (in characters) from the first edge vertex. This is similar, but
not identical to Fiala’s and Greene’s [8] method C2.

2. Save the position of one of the unique suffixes that has a leaf in the subtree
where AP’s downward movement ended, incremented by the depth of the
location where AP ended after the last sideways move. Also save the differ-
ence between depths of this location and the location where AP ended the
downward movement. This creates a Ziv and Lempel [4] compression variant
and suffix tree is not necessary for the decompression.

Relative Description. We look for inspiration at the construction algorithms
and denote the Ukkonen based and McCreight based approaches STC U and

Suffix Tree Based Data Compression 355

STC M, respectively. The Ukkonen’s algorithm is “cautious” and proceeds one
character at a time as it fears that unexpected character will follow. So we will
be “cautious” as well and describe one decision made during AP movement
at a time. On the other hand, the McCreight’s algorithm is “optimistic” and
proceeds one unique suffix at a time as it believes that it will take some time,
before it reads an unexpected character. An “optimistic” description method
may describe AP movement decisions in chunks that end in a new leaf creation.

STC U. If AP is on an edge, there are just two possibilities: either it is moved
down or sideways. However, when in a node, AP may move down on one of node’s
edges or move sideways. Things are a bit different in ⊥, where for every a ∈ Σ
there is an a-edge leading from ⊥ to λ and AP always moves down here. This
method is similar to PPM [3] type methods. Note that the sideways movement
corresponds to the context escape.

STC M1. Save the chunk length and the edge choices made in nodes.

STC M2. Save the edge choice when in a node. When on an edge, write down
whether or not AP reached the second vertex. If it did not, note how far it moved
from the current position on this edge.

STC M3. differs from STC M2 in case AP does not reach the second vertex. If
this happens, it falls back to STC U-like single decision description.

STC M4. is an STC M1 modification. When AP ends up in a node after a side-
ways movement, just the single decision made in that node is saved and only
later choices are grouped.

All the STC M methods behave like a dictionary compression algorithm with
a PPM dictionary choice. However, when compared to the work of Hoang et.al.
[12], STC M dictionaries are more compact and higher level contexts are incor-
porated. Another similar method by Bloom [13] has only one phrase in each
context dictionary and is based on hashing.

4.3 Example

To illustrate how STC algorithms work, we will use a simple example with string
cocoa and method STC M1. All 10 steps of STree(cocoa) construction are de-
picted in Fig. 1. Note that STC M1 chunks are: (0), (1, c), (3, oc), (0), (0) and
(1, a), where the first component of each tuple is chunk length and the optional
second component is list of edge choices made.

5 Implementation

To evaluate the proposed algorithms, we tested methods STC U and STC M1
paired with a combination of two well known arithmetic coding techniques: the
Piecewise Integer Mapping [14] and Schindler’s Byte Renormalisation [15]. Suffix
tree implementation is similar to “sliding window” implementations by Larsson

356 M. Senft

λ

a c o

c

(1) sideways

λ

a c o

c

(2) down on c-edge

λ

a c o

c o

o

(3) sideways

λ

a c o

c o

o

(4) down on o-edge

λ

a c o

c o

o

c

c

(5) down on c-edge

λ

a c o

c o

o

c

o

c

o

(6) down

λ

a c o

c o

o

a c

o

a

c

o

a

(7) sideways

λ

a c o

c o

o

a c

o

a

a c

o

a

(8) sideways

λ

a c o

a c o

o

a c

o

a

a c

o

a

(9) sideways

λ

a c o

a c o

o

a c

o

a

a c

o

a

(10) down on a-edge

Fig 1. Step by step STree (cocoa) construction. Big circles are nodes, small circles
are locations on edges and lines that start in node go through zero or more edge
locations and end with arrow in another node are edges. Solid objects are regular suffix
tree nodes and edges, dashed objects are auxiliary and dotted objects were created in
the particular step. Single characters along edges form edge labels. Bold arrows and
subfigure labels describe AP movement

.

Suffix Tree Based Data Compression 357

[9] and Fiala and Greene [8]. To estimate the probability of movement choice,
we employ a very simple method using counters in nodes combined with AX
estimation method [16] and exclusion technique [17]. For more details see [18].

6 Experiments

We have performed a series of experiments to compare the proposed meth-
ods with existing methods represented by BZip2 [19], CTW [20, 21], GZip [22].
STC M1 and STC U were run with the “sliding window” size of 221 and other
methods with their maximum compression settings turned on. All tests were run
under Debian GNU/Linux 3.0 on Athlon 1.3GHz processor with 256MB DDR
RAM. The source code was compiled using a GNU C++ version 2.95.4. More
detailed tests can be found in [18].

The following three data sets were used: the standard Canterbury Corpus
[23], its optional large part and the Linux 2.4.14 kernel archive [24]. Note that

Table 1. Canterbury Base Corpus compression results

Cant. text play html csrc list excl tech poem fax sprc man Avg.
Base 149K 122K 24K 11K 4K 1006K 417K 471K 501K 37K 4K 250K
BZip2 2.27 2.53 2.48 2.18 2.76 1.01 2.02 2.42 0.78 2.70 3.33 2.23
CTW 2.06 2.32 2.31 1.97 2.38 0.97 1.81 2.18 0.79 2.54 2.98 2.03
GZip 2.85 3.12 2.60 2.25 2.68 1.63 2.71 3.23 0.82 2.67 3.32 2.53
STC M1 2.88 3.24 2.91 2.49 2.94 2.36 2.65 3.20 1.21 3.14 3.62 2.79
STC U 2.42 2.70 2.41 2.11 2.47 1.45 2.18 2.65 0.90 2.67 3.08 2.28

Table 2. Canterbury Large Corpus and Linux 2.4.14 results

bible E.coli world Avg.
Cant. 3953KB 4530KB 2415KB 3632KB
Large com. com. dec. com. com. dec. com. com. dec. com.

bpc KB/s KB/s bpc KB/s KB/s bpc KB/s KB/s bpc
BZip2 1.671 1168 3790 2.157 1091 3109 1.583 1125 3594 1.804
CTW 1.464 13 13 1.939 6 6 1.298 22 22 1.567
GZip 2.325 2653 47641 2.240 474 46224 2.333 4745 51392 2.299
STC M1 2.245 274 2 2.968 242 4 1.949 314 2 2.387
STC U 1.798 266 239 2.665 258 238 1.513 298 262 1.992

linux-2.4.14.tar
Linux 123600K
2.4.14 com. com. dec.

bpc KB/s KB/s
BZip2 1.466 1172 5154
CTW 1.814 11 11
GZip 1.814 3878 60707
STC M1 1.689 202 5
STC U 1.373 192 176

358 M. Senft

there are many results available for the Canterbury Corpus at the corpus site [23].
The compression performance in bits per character (bpc) and speed in kilobytes
per second are in tables 1 and 2. Note that method STC U is much better than
STC M1 in both compression performance and decompression speed. STC U is
sometimes very close to the best compression performance of the other three
methods and surprisingly even outperforms them on the Linux test, where most
of the decisions are made on edges and its simple probability estimation works
well. The speed tests have shown that when compressing the STC methods are
significantly faster than CTW and also much slower than BZip and GZip. This
changes a bit on decompression, where STC M1 is the slowest method, probably
due to a very large number of short chunks.

7 Conclusion

In this paper we have demonstrated the possibility of creating a suffix tree based
compression methods. We have shown that many different methods can be sim-
ulated by STC variants, moreover, we have presented some new methods from
the same family and surely other methods may be added.

Though the tested algorithms have shown promising results, there definitely is
some room for improvement both in speed and compression. The slow part of our
methods is the modelling as the coding part takes only about 3% of the total run
time. The most time-consuming part is the edge list traversal algorithm. To help
compression, we should use a better method for escape probability estimation
and a clever method of probability estimation in higher-level contexts. Promising
candidates for this are Shkarin’s PPMII techniques [25].

While this paper concentrated on the use of the suffix tree, it is clear that
related data structures like suffix trie, DAWG and CDAWG could be used as
well (see for example [18, 26]). Especially DAWG and CDAWG look interesting,
however, there are problems with the leftest character removal for these two
structures (cf. [27]).

Acknowledgements. This research was supported in part by GAČR grant
201/03/0912.

References

1. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th
Annual IEEE Symposium on Switching and Automata Theory. (1973) 1–11

2. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Research Report 124, Digital Systems Research Center, Palo Alto, California, USA
(1994)

3. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications COM-32 (1984) 396–402

4. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23 (1977) 337–343

Suffix Tree Based Data Compression 359

5. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of the Association for Computing Machinery 23 (1976) 262–272

6. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14 (1995) 249–260
7. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings

of the 38th Annual IEEE Symposium on Foundations of Computer Science. (1997)
137–143

8. Fiala, E.R., Greene, D.H.: Data compression with finite windows. Communications
of the Association for Computing Machinery 32 (1989) 490–505

9. Larsson, N.J.: Structures of String Matching and Data Compression. PhD thesis,
Department of Computer Science, Lund University, Sweden (1999)

10. Harary, F.: Graph Theory. Addison-Wesley, New York (1969)
11. Balkenhol, B., Kurtz, S., Shtarkov, Y.M.: Modifications of the Burrows and

Wheeler data compression algorithm. In Storer, J., Cohn, M., eds.: IEEE Data
Compression Conference. (1999) 188–197

12. T.Hoang, D., Long, P.M., Vitter, J.S.: Dictionary selection using partial matching.
Information Sciences 119 (1999) 57–72

13. Bloom, C.R.: LZP: A new data compression algorithm. In Storer,
J., Cohn, M., eds.: IEEE Data Compression Conference. (1996) 425
http://www.cbloom.com/src/index lz.html.

14. Stuiver, L., Moffat, A.: Piecewise integer mapping for arithmetic coding. In Storer,
J., Cohn, M., eds.: IEEE Data Compression Conference. (1998) 3–12

15. Schindler, M.: Byte oriented arithmetic coding. In Storer, J., Cohn, M., eds.: IEEE
Data Compression Conference. (1998) Poster presentation.

16. Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Transac-
tions on Information Systems 16 (1998) 256–294

17. Bell, T., Witten, I.H., Cleary, J.G.: Modelling for text compression. ACM Com-
puting Surveys 21 (1989) 557–591

18. Senft, M.: Lossless data compression using suffix trees. Master’s thesis, Faculty of
Mathematics and Physics, Charles University, Prague, Czech Republic (2003) (in
czech).

19. Seward, J.: BZip2. (http://sources.redhat.com/bzip2/)
20. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting

method: Basic properties. IEEE Transactions on Information Theory IT-41 (1995)
653–664

21. Franken, E., Peeters, M., Tjalkens, T.J.: CTW 0.1b2. (http://www.ele.tue.nl/ctw)
22. Gailly, J.L.: GZip. (http://www.gzip.org/)
23. Arnold, R., Bell, T.: A corpus for the evaluation of lossless compression algorithms.

In Storer, J., Cohn, M., eds.: IEEE Data Compression Conference. (1997) 201–210
http://corpus.canterbury.ac.cz/.

24. Torvalds, L., et al.: Linux. (ftp://ftp.cz.kernel.org/pub/linux/)
25. Shkarin, D.: PPM: One step to practicality. In Storer, J., Cohn, M., eds.: IEEE

Data Compression Conference. (2002) 202–211
26. Inenaga, S., et al.: On-line construction of compact directed acyclic word graph.

In Amir, A., Landau, G.M., eds.: Proceedings of the 12th Annunal Symposium
on Combinatorial Pattern Matching (CMP ’01). Volume 2089 of Lecture Notes in
Computer Science., Springer-Verlag (2001) 169–180

27. Inenaga, S., Shinohara, A., Takeda, M., Arikawa, S.: Compact directed acyclic
word graphs for a sliding window. Journal of Discrete Algorithms 2 (2004) 25–51
(special issue for SPIRE’02).

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 360 – 363, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tier Aspect Model Based on Updatable Views

Radosław Adamus1 and Kazimierz Subieta1, 2, 3

1 Computer Engineering Department, Technical University of Lodz, Lodz, Poland
2 Institute of Computer Science PAS, Warsaw, Poland

3 Polish-Japanese Institute of Information Technology, Warsaw, Poland
radamus@kis.p.lodz.pl, subieta@ipipan.waw.pl

Abstract. The tier aspect model addresses Aspect Oriented Programming
(AOP) in the context of database applications. It is a new technique of
separation of concerns through tiers implemented as virtual object-oriented
updatable views. The code of an aspect related to particular objects is
encapsulated within a separate view that overrides all generic operations
performed on the objects. Aspect tiers form a chain of views. Such additional
codes can do any extra action e.g. security, licensing, integrity constraints,
monitoring and others. The idea is based on the Stack-Based Approach to
object-oriented query languages and the novel idea of virtual updatable views.

1 Introduction

In this paper we focus attention on specific database features that in the context of
software change become tangled aspects [2,4], i.e. they tend to be dispersed along
many pieces of data or code, assuming typical relational, object-relational or object-
oriented DBMSs. Our idea is to introduce to an object-oriented DBMS some new
facilities that allow the programmer to focus such aspects in continuous code pieces.

As an example of a tangled database aspect consider a bank database whose
Account objects contain the Balance attribute. Assume that some 5 years after
launching the application the requirement to this attribute has been changed: any user
that reads this attribute or makes any other operation must be recorded at a special log
file. The Balance attribute is used in hundreds of places along the application code.
We can suppose that references to Balance can be hidden within dynamic SQL
statements, i.e. they are not explicitly seen from the application program code. This
could make the task of discovering all places where the attribute Balance is used
extremely difficult. Note that the trigger technique in this case is inapplicable because
triggers cannot be fired on read events. In classical databases the only way to fulfill
this requirement is long and costly adjustment of the code in those hundreds of places.

We propose to cope with such cases by means of virtual updatable database views.
The idea is that each generic operation acting on virtual objects (including read
operations) can be overloaded by a procedure which implements the mapping of the
operation to operations on stored database objects. Regarding the above example, we
propose to use the view named Balance that overloads the original Balance attribute.
Within the view one can put any additional code that does the required action.
Because the name of the view is the same as the name of the attribute all the bindings

Tier Aspect Model Based on Updatable Views

361

to Balance come to the view. Only the view code contains bindings to the original
Balance attribute. The updating semantics of the original Balance attribute can be
retained or modified according to new requirements.

2 General View of the Tier Aspect Model

The tier aspect model [1] allows the designers and programmer to isolate, name
encapsulate and implement software requirements related to aspects that are usually
tangled in classical database applications. The goal of the model is twofold:

• Conceptually independent requirements can be implemented as separable
(adjustable, deletable) conceptual units of the software;

• A new requirement, as a separate conceptual unit, can be added on top of the
existing implemented conceptual units related to a particular data type.

A tier is implemented as a virtual updatable database view. To our purposes we
introduce to the concept the following original qualities that so far are not
implemented and even not considered in the database literature:

• Full transparent updateability of virtual objects delivered by the view. In
current DBMS-s updateability is severely limited to avoid updating anomalies.

• A language for view definitions should have full computational power.
• A view definition can access and update entities from the database, metabase,

application environment and operating system environment (e.g. files).
• The view language should address a powerful object-oriented database model.

Database views with the above properties are being developed in the context of
the Stack-Based Approach (SBA) to object-oriented query languages [5]. SBA
introduces a query/programming language SBQL which is then used to define virtual
updatable views [3]. For the tier model we use views in different configuration by
assuming that a new view named A is defined on top of (virtual or stored) objects
named A. After introducing the view all external bindings to objects A will come
through the view, and only the view can access the original objects A. In this way one
can introduce any new tier related to a new requirement on objects A. Any population
of database objects (collections, attributes, methods, etc.) can be covered by a chain of
virtual updateable overloading views, where each view implements some isolated
requirement concerning access semantics of corresponding objects.

3 Implementation of the Tier Aspect Model

The tier aspect model influences the typical stack-based semantics of query
languages. We assume that stored or virtual objects named n in the database can be
overloaded by an updateable view that delivers virtual objects named n. Overloading
means that after the view has been inserted all bindings of name n invoke the view
rather than return references to objects named n. Access to the original objects named
n is possible only inside the overloading view, through special syntax. A managerial
name of a view [3] (independent from the name of virtual objects delivered by the
view) allows the administrator to make managerial operations on the views, e.g.

R. Adamus and K. Subieta

362

delete a view, update it, or change its position in a chain. Virtual objects delivered by
an overloading view can be overloaded by a next overloaded view, with the same
rules, Fig.1.

View 1 (e.g. balance updates have to
be additionally authorized)
View 1 (e.g. balance updates have to
be additionally authorized)
View 1 (e.g. balance updates have to
be additionally authorized)
View 1 (e.g. balance updates have to
be additionally authorized)

View 2 (e.g. integrity constraint : balance
cannot be decreased under debit)
View 2 (e.g. integrity constraint : balance
cannot be decreased under debit)
View 2 (e.g. integrity constraint : balance
cannot be decreased under debit)
View 2 (e.g. integrity constraint : balance
cannot be decreased under debit)

View 3 (e.g. each access to balance
must be logged).
View 3 (e.g. each access to balance
must be logged).
View 3 (e.g. each access to balance
must be logged).
View 3 (e.g. each access to balance
must be logged).

External calls to name balanceExternal calls to name balanceExternal calls to name balanceExternal calls to name balance

Stored objects balanceStored objects balanceStored objects balanceStored objects balanceStored objects balanceStored objects balance

BalanceProtectDef view
returning virtual objects

named balance

BalanceProtectDef view
returning virtual objects

named balance

BalanceProtectDef view
returning virtual objects

named balance

BalanceProtectDef view
returning virtual objects

named balance

BalanceProtectDef view
returning virtual objects

named balance

BalanceProtectDef view
returning virtual objects

named balance

BalanceDebitDef view
returning virtual objects

named balance

BalanceDebitDef view
returning virtual objects

named balance

BalanceDebitDef view
returning virtual objects

named balance

BalanceDebitDef view
returning virtual objects

named balance

BalanceDebitDef view
returning virtual objects

named balance

BalanceDebitDef view
returning virtual objects

named balance

BalanceAuditDef view
returning virtual objects

named balance

BalanceAuditDef view
returning virtual objects

named balance

BalanceAuditDef view
returning virtual objects

named balance

BalanceAuditDef view
returning virtual objects

named balance

BalanceAuditDef view
returning virtual objects

named balance

BalanceAuditDef view
returning virtual objects

named balance

Fig. 1. Example of a chain of overloading views

A chain of overloading views has to be formed into a database structure. It should
be possible to find the most outer view to which all external calls are to be bound.
This should enable localizing the next view in the chain (the calling order). For full
updating power it is also necessary to find a next view in the chain. In Fig.1 the most
outer view is BalanceAuditDef .

4 Query Processing for Overloading Views

The view programmer needs language constructs that allow him/her to call the
original (overloaded) object from the view body. On the syntax level of the query
language the constructs introduce a keyword original. This syntax informs the
binding mechanism that the binding must be special. The example below presents the
definition of the BalanceAuditDef view defining the new semantic of the Balance
objects (every read of the balance must be logged).

create overloading view BalanceAuditDef {
 virtual objects Balance { return original Balance as b}
 on_retrieve do { SaveLogFile(); return deref b }
 on_update(NewBalance) do { b:= NewBalance }
}

insert BalanceAuditDef into AccountClass on top of chain Balance; //administrative
operation

Tier Aspect Model Based on Updatable Views

363

Name Balance preceded by the keyword original requires binding to the previous
view in the chain or to the original Balance object (if there is no more views in the
chain). Balance not preceded by this keyword is treated as recursive call to the virtual
objects Balance procedure placed in the first overloading view. There are no other
binding possibilities in the model. In particular, it is not possible to call from a view
another view in the chain. This assumption gives the opportunity to equip the
administrative module with operation allowing deleting and changing the order of
views in chains.

The environment stack mechanism should ensure that every call to name n
preceded with the keyword original causes execution of a virtual objects procedure
located in the view that is previous in the chain or, if no more views, binding to the
original object. Because of the paper size limits we skip more detailed description.

5 Conclusion

In the paper we have proposed the tier aspect model as a new technique of separation
of concerns through tiers implemented as virtual object-oriented updatable views.
Thanks to full control over retrieve, update, insert and delete operations acting on
virtual objects we are able to add new semantic to database objects. Our idea is that
such views specifically overload original database objects; thus any new requirement
can be put within a chain of such views. A view can be easily inserted in a chain,
removed from it, changed or replaced after the requirements are changed.

Currently the prototype implementing updateable views is ready. We are adopting
the prototype to our idea of the tier aspect model based on overloading views for the
prototype object-oriented database server ODRA.

References

[1] R.Adamus, K.Subieta. Security Management Through Overloading Views. Proc. of
International Conference on Ontologies, Databases and Applications of Semantics
(ODBASE), 25 - 29 October 2004, Larnaca, Cyprus, Springer LNCS, to appear

[2] G.Kiczales, J.Lamping, A.Mendhekar, C.Maeda, C.Lopes, J.Loingtier, J.Irwin. Aspect-
Oriented Programming. Proc. ECOOP Conf., Springer LNCS 1241, 220-242, 1997

[3] H.Kozankiewicz, J.Leszczyłowski, K. Subieta. Updateable XML Views. Proc. 7th ADBIS
Conf., Springer LNCS 2798, 2003, 381-399

[4] A.Rashid. Aspect-Oriented Database Systems. Springer-Verlag, Berlin Heildelberg 2004.
[5] K.Subieta. Theory and Construction of Object-Oriented Query Languages. Editors of the

Polish-Japanese Institute of Information Technology, 2004, 522 pages

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 364 – 367, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Well-Founded Metamodeling for
Model-Driven Architecture

Liliana Favre

Universidad Nacional del Centro de la Provincia de Buenos Aires,
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires,

Argentina
lfavre@exa.unicen.edu.ar

Abstract. The Model-Driven Architecture (MDA) is emerging as a technical
framework to improve productivity, portability, interoperability , and evolution.
Metamodeling plays a key role in MDA. A combination of formal specification
techniques and metamodeling can help us to address Model-Driven
developments. In this paper we describe a conceptual framework for MDA-
based metamodeling that integrates UML/OCL and formal specifications. We
present the specification language NEREUS for specifying UML metamodels.
NEREUS can be viewed as an intermediate notation open to many other formal
languages. A transformational system to translate UML/OCL to NEREUS was
defined. We investigate the way to define metamodel mappings using
UML/OCL and NEREUS.

1 Introduction

The Object Management Group (OMG) is facing a paradigm shift from object-
oriented software development to model-centric development. A recent OMG
initiative is the Model Driven Architecture (MDA) that is emerging as a technical
framework for information integration and tools interoperation based on the
separation of Platform Specific Models (PSMs) from Platform Independent Models
(PIMs) [8].

One of the key challenges of the Model-Driven paradigm is to define, manage, and
maintain traces and relationships between different models and model views in an
automatic manner. MDA standard is still evolving and few tools provide support for it
[11].

Metamodeling is a key facility in the new MDA paradigm. The metamodeling
framework for the UML is based on an architecture with four layers: meta-
metamodel, metamodel, model and user objects. The UML metamodel has
traditionally been based on an abstract syntax consisting of UML class diagrams,
well-formedness rules using the Object Constraint Language (OCL) and natural
language [9]. Related metamodels and meta-metamodels such as MOF (Meta Object
Facility), SPEM (Software Process Engineering Metamodel) and CWM (Common
Warehouse Model) share common design philosophies [10]. To date several
metamodeling approaches have been proposed to Model-Driven development [1], [2],
[4], [7].

 Well-Founded Metamodeling for Model-Driven Architecture 365

A combination of formal specification techniques and metamodeling can help us to
address MDA. To enable automatic transformation of a model, we need the UML
metamodel that is written in a well-defined language. In this direction, we propose the
NEREUS language that is aligned with MDA. A transformational system to translate
UML/ OCL to NEREUS was defined. Thus, the UML metamodel can be formalized,
and its resulting models can be simulated and validated for consistency. We describe
different correspondences that may hold between several models and metamodels that
are expressed in terms of UML/OCL and NEREUS. NEREUS has a formal semantics
in terms of a translation into the algebraic language CASL [3].

The structure of the rest of this article is as follows. Section 2 describes how to
formalize metamodels. Section 3 presents the approach that is used for transforming
models. Finally, Section 4 concludes and discusses further work.

2 Formalizing Metamodels

A combination of formal specification techniques and metamodeling can help us to
specify model transformations independently of any particular technology. A formal
specification clarifies the intended meaning of metamodels, helps to validate them
and provides reference for implementation.

We propose the metamodeling language NEREUS that is aligned with metamodels
based at least on the concepts of entity, associations and packages. NEREUS can be
viewed as an intermediate notation open to many other formal languages. In
particular, we define its semantics by giving a precise formal meaning to each of the
constructions of the NEREUS in terms of the algebraic language CASL [3] that can
be viewed as the centerpiece of a standardized family of specification languages.

NEREUS consists of several constructions to express classes, associations and
packages. It is relation-centric, that is it expresses different kinds of relations
(dependency, association, aggregation, composition) as primitives to develop
specifications. It provides constructions to express clientship, inheritance and
subtyping relations. NEREUS supports higher-order operations. Also, it is possible to
specify any of the three levels of visibility for operations: public, protected and
private. The axioms can be arbitrary first-order formulae.

NEREUS provides a taxonomy of constructor types that classifies associations
according to kind (aggregation, composition, association, association class, qualified
association), degree (unary, binary), navigability (unidirectional, bidirectional),
connectivity (one-to-one, one-to-many, many-to-many). Associations describe
interaction relations among objects as well as constraints over such related objects.

The UML metamodel can be described using a combination of OCL and UML. In
this direction, we define a transformational system to transform UML/OCL class
diagrams into NEREUS. The transformation process of OCL specifications into
NEREUS is supported by a system of transformation rules. Analyzing OCL
specifications we can derive axioms that will be included in the NEREUS
specifications. This kind of transformations can be automated. A detailed description
may be found at [5], [6].

366 L. Favre

Fig. 1. Relations among models and metamodels

3 MDA Transformations

MDA proposes to use different models (PIM and PSMs) at different stages of the
development and to employ automated transformations between them. The MDA
process is divided into three main steps: construct a model with a high level of
abstraction that is called Platform Independent Model (PIM); transform the PIM into
one or more Platform Specific Models (PSMs), each one suited for different
technologies, and transform the PSMs to code.

The PIMs, PSMs and code describe a system in different levels of abstraction. We
propose to define PIMs and PSMs by integrating UML/OCL and NEREUS
specifications. A PSM is tailored to specify different realizations of a PIM that are
available in one specific technology, for example dot.NET, J2EE or relational.

The notion of mapping among models is crucial in the MDA approach. Fig. 1
shows a correspondence model. It defines various correspondences that may hold
between several models and metamodels. Mappings are expressed in OCL and
NEREUS. In the first case, a transformation between models/metamodels is a
sequence of OCL transformations. A transformation rule is defined by its name, a
source language, a target language, a source condition, a target condition and a
mapping description in terms of rules written in OCL [9]. In NEREUS mappings are

N E R E U S
M E T A M O D E L
P S M - .N E T

N E R E U S
M E T A M O D E L
P P S M

J 2 E E

U M L /O C L
M E T A M O D E L
P S M
J 2 E E

 N E R E U S
 M O D E L
 P S M
 J 2 E E

U M L /O C L
M O D E L
P S M - J 2 E E

U M L /O C L
M E T A M O D E L
P S M -.N E T

 N E R E U S
 M O D E L
 P S M . N E TU M L /O C L

M O D E L
P S M - .N E T

N E R E U S
M E T A M O D E L
P I M

N E R E U S
M O D E L
P S M -R E L

N E R E U S
M E T A M O D E L
P S M -R E L

 N E R E U S
 M O D E L
 P IM U M L /O C L

M O D E L
P I M

U M L /O C L
M E T A M O D E L
P I M

U M L /O C L
M E T A M O D E L
P S M - R E L

U M L /O C L
M O D E L
P S M -R E L

N E R E U S
M E T A M O D E L

U M L /O C L
M E T A M O D E L

 N E R E U S

M E T A M O D E L U M L /O C L

M E T A M O D E L

C O D E
C O D E

N E R E U S
M E T A M O D E L

U M L /O C L
M E T A M O D E L

C O D E

is - in s ta n c e-o f

b r id g e U M L /O C L

m eta m o d e l m a p p in g
N E R E U S

m eta m o d e l m a p p in g
U M L /O C L

m o d e l m a p p in g
N E R E U S

m o d e l m a p p in g
U M L /O C L

 Well-Founded Metamodeling for Model-Driven Architecture 367

built by instantiating reusable schemes. Relations are employed to define which pairs
the target and source models are connected. Transformations allow us to produce a
trace between the elements of the target model and the elements of the source model.
They can be automated and preserve the integrity among the different models.

4 Conclusions

In this paper we describe a conceptual framework for MDA-based metamodeling that
integrates UML/OCL and formal specifications. The bases of our approach are the
metamodeling language NEREUS and a transformational system to translate OCL to
NEREUS. Mapping relations across models are also described.

We foresee to integrate our results in the existing UML tools and experiment with
different platform such as dotNET and J2EE.

References

1. Akehurst, D., Kent, S.: A relational approach to defining transformations in a metamodel.
In: Jezequel, J.M., Hussmann, H., Cook, S. (eds): Lecture Notes in Computer Science, Vol.
2460. Springer-Verlag, Berlin Heidelberg New York (2002) 243-258.

2. Bézivin, J., Farcet, N., Jézéquel, J., Langlois, B., Pollet, D.: Reflective Model Driven
Engineering. In: Stevens, P., Whittle, J., Booch, G. (eds): Lecture Notes in Computer
Science, Vol. 2863. Springer-Verlag, Berlin Heidelberg New York (2003) 175-189.

3. Bidoit, M., Mosses, P.: CASL User Manual- Introduction to Using the Common Algebraic
Specification Language. Lecture Notes in Computer Science, Vol. 2900. Springer-Verlag,
Berlin Heidelberg New York (2004).

4. Caplat, G., Sourrouille, J.: Model Mapping in MDA. In: Bezivin, J. France, R. (eds): Proc.
UML'2002 Workshop in Software Model Engineering (WiSME 2002). http://www.
metamodel.com/wisme-2002 (2002).

5. Favre, L.: A Formal Mapping between UML Static Models and Algebraic Specifications.
In: Evans, A. France,R., Moreira, A., Rumpe, B. (eds): Practical UML-Based Rigorous
Development Methods-Countering or Integrating the eXtremist, Lecture Notes in
Informatics (P 7). SEW, GI Edition, Alemania (2001) 113-127.

6. Favre, L.: Foundations for MDA-based Forward Engineering. Journal of Object
Technology (JOT). ETH Zurich, to appear (Jan/Feb 2005)

7. Haussmann, J.: Relations-Relating metamodels. In: Evans, A., Sammut, P. , Williams, J.
(eds): Proc. Metamodeling for MDA. First International Workshop. York, UK (2003) 147-
161.

8. MDA. The Model Driven Architecture: Object Management Group. www.omg.org/mda
(2004).

9. OCL Specification. Versión 2.0.: Documento ptc/03-03-14. www.omg.org (2004).
10. OMG. Unified Modeling Language Specification, v1.5: Object Management Group.

http://cgi.omg.org /cgi-bin/doc?ad/01-02-14 (2004).
11. UML Tools: www.objectsbydesign.com/tools/ (2004).

Stepwise Optimization Method for k-CNN
Search for Location-Based Service

Jun Feng1, Naoto Mukai2, and Toyohide Watanabe2

1 Hohai University, Nanjing, Jiangsu 210098 China
fengjun-cn@vip.sina.com

2 Nagoya University, Nagoya, Aichi 464-8603 Japan

Abstract. In this paper, we focus on a typical situation of LBS which
is to provide services for users in cars that move in a road network. For
such kind of users, the problem of k -CNN search along a specific route
on road network is to find out k nearest neighbor (k -NN) objects for any
place on the route. k nearest neighbors are selected based on the path
length from the route to the objects, and the continuous search for all
the points on the route should be considered. A k -CNN search method is
proposed by using an incremental k -NN search based on road network.

1 Introduction

The issue of how to provide location-based service (LBS) attracts many re-
searchers. We focus on a typical situation of LBS which is to provide services
for users in cars that move in a road network. For such kind of users, the prob-
lem of k continuous nearest neighbors (k -CNN) search along a specific route
on road network is to find out k nearest neighbor objects for any place on the
route, k nearest neighbors are selected based on the path length from the route
to the objects. It is an instance of spatial distance semi-join problem [1]. We
propose new strategies for efficiently processing k -CNN search on road network.
The existing work for CNN search is almost presented from the computational
geometry perspective [2] [3] [4]. CNN search was based on the straight-line dis-
tance between objects in these works. While researches on k -NN search have
been conducted from the viewpoint of incremental spatial join [5, 6, 7] and dis-
tance browsing [1, 8]. The distance functions are all based on a distance metric
for points, dis(s, t), such as the Chessboard, Manhattan or Euler metric.

2 Preliminaries

A road network with nodes and links representing the cross-points and road seg-
ments can be regarded as a graph G : G = (V, L), where V is a set of vertices
{ v1, v2, ...vn}, and L is a collection of edges { l1, l2, ...lm}, used to indicate
the relationship between vertices. The predefined route from a start point vs

to an end point ve is given by an array Route(vs, ve){(vr1, ..., vri, ..., vrn)|vr1 =

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 368–371, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stepwise Optimization Method for k -CNN Search 369

vs, vrn = ve, vri ∈ V A sub-route of Route(vs, ve) is defined as (vrl, ..., vrj), which
overlaps with Route(vs, ve). If the target object set is T = {ta, tb, ...} and ti ∈ T
with a corresponding node vti ∈ V , the NN for vri on Route(vs, ve) is ti when
the shortest path PathV ri ti = {min(vri, ..., vj , ...vti)|vj ∈ V, ti = ta, tb, ...}.

[Definition 1]. Node vd ∈ V is called the divergence point between Route(vs, ve)
and PathV ri ti if: 1) The sub-route (vri, ..., vd) of PathV ri ti is also a sub-route of
Route(vs, ve); 2) The node following vd along PathV ri ti is not on Route(vs, ve).

[Definition 2]. Node vc ∈ V is called the computation point of Route(vs, ve)
if: 1) vc is the start point of Route(vs, ve); 2) vc is on Route(vs, ve) and is
also a node on the route following a divergence point between Route(vs, ve) and
PathV ri ti.

To solve the CNN problem, there are two main issues: one is the selection
of computation point on the route; and another is the computation of NN for
the computation point. Here, we give two propositions on the road network for
nearest object search, and the details of them is given in [9].

[Proposition1]. For a source point S and a target object t, when the length of
a path from S to t is r, any target object which is nearer to S than t can only be
found inside a circle region, denoted as r-region, whose center is S and whose
radius is r . �

[Proposition 2]. For two points S and t on the road network with straight-line
distance d, the test of whether there is a path shorter than r from S to t can be
based on a path search region, denoted as p-region, the sum of the straight-line
distance between any nodes inside this region and S and that between this node
and t is not longer than r. �

3 k-CNN Search Method

The problem of k -CNN search which we address in this paper is to find k -NN’s
for any point along a specific route on a large road network. k -NN’s are the first
k target objects from the point on the route on the sort of the shortest path
length.

3.1 Bounds of the Shortest Path Length

Observe Figure 1: in 2-CNN search, 2-NN’s for the first computation point S are
t and tg. To find 2-NN for the next computation point c can take advantage of
the previous computation, for example at least t and tg can be regarded as 2-NN
up to now, which are with the possible longest paths from c: (Pathcq + Pathqt)
and (Pathcq + Pathqtg). However, the real path length from c to them may be
varied. This is because there may be some shorter paths, and the lower and

370 J. Feng, N. Mukai, and T. Watanabe

r2

c

t’

S

ta tb tc

t

tf

q

tg

rmax2

c1
rmin2

rmin1

rmax1
r1

Fig. 1. There are lower and upper bounds of path length from the current computation
point to the previous k-NN’s

upper bounds of the path length from c to t are rmin and rmax , which can be
decided by rmin = |Pathcq − Pathqt |; rmax = Pathcq + Pathqt . Those for tg
are rming and rmaxg. It means that t is a NN candidate for c with a possible
path length varied from rmin to rmax . The value of Pathqt has been computed
in the previous NN search step for S, and the value of Pathcq is the curve length
between c and q . Though rmaxg is greater than rmax, it can to say the path
length to tg is longer than that to t .

Based on Proposition 1, if r-region is decided for C with the radius rmaxg ,
the target objects nearer than the up-to-now known 2-NN’s can be found only
inside this r-region.

3.2 Data Structures for k-CNN Search

The NN search process bases on the R-tree index and a priority queue Queue
[10]. Queue is used to record the intermediate results: the candidate targets
or the internal nodes of R-tree [11] inside r-region. The key used to order the
elements on Queue is the straight-line distance of R-tree node and the path
length computed for target object. In the process of searching k -NN’s for a
computation point, the priority queue can also be used. When an object with
the computed path length turns out on the head of the queue, the first (or the
nearest) neighbor is found. On the next time, the second (2-nearest) neighbor
will be returned. However, in the process of CNN search, it assures the objects
found on the head of queue are in order, but cannot assure that there are enough
(here, k) objects in the queue. To solve this problem, another data structure,
called k -queue, is adopted to keep the up-to-now k candidates and distances
(or distance bounds) for k -NN search. The greatest upper bound of distance is
regarded as a cutoff value for pruning nodes or objects: a node or an object
with a longer path is not inserted into the priority queue, while there are at
least k candidates kept in the priority queue. k -queue is defined as a fixed length
queue, where 1) k is the number of nearest neighbors found for every point on
the predefined route. It is decided at the beginning of k -CNN search, and be

Stepwise Optimization Method for k -CNN Search 371

kept in the process of the search. 2) The elements inside the queue are triplets
< t, rmin, rmax >, where t is a target object and rmin and rmax are the lower
and upper bounds of the path length from the current computation point to t.
If the real path length to t has been computed, then rmin and rmax are set as
the same value. There are at most k elements in the queue. 3) The longest rmax

in k -queue is regarded as a cutoff value, which is used to set r-region for pruning
objects in the priority queue Queue.

4 Conclusion

From a viewpoint of decreasing the times of disk access, we proposed a method
for k -CNN search along route on road network by using small search regions.
Our method is based on the premise of that the distance from one place to
another on the road network is the path length of them. The search regions can
be decided based on the path length, and the filtering condition in the search
via hierarchical data structures can take advantage of it. In ITS applications,
there are applications, such as CNN, k -NN or k -CNN search, are based on the
travel cost, sometimes dynamical values, from one place to another. Because the
travel cost may not be in direct proportion to their path length or the straight-
line distance, our method proposed in this paper cannot be used to solve this
problem directly.

References

1. Hjaltson, G., Samet, H.: Incremental distance join algorithms for spatial databases.
Proc.of ACM-SIGMOD (1998) 237–248

2. Tao, Y.F., Papadias, D., Shen, Q.M.: Continuous nearest neighbor search. Proc.
of VLDB’02 (2002) 287–298

3. Song, Z.X., Roussopoulos, N.: K-nearest neighbor search for moving query point.
Proc. of SSTD’01 (2001) 79–96

4. Bespamyatnikh, S., Snoeyink, J.: Queries with segments in voronoi diagrams.
SODA (1999)

5. Jacox, E.H., Samet, H.: Iterative spatial join. ACM Trans. Database Syst. 28
(2003) 230–256

6. Lee, D.H., Kim, H.J.: An efficient technique for nearest-neighbor query processing
on the spy-tec. IEEE Trans. on Knowledge and Data Engineering 15 (2003) 1472–
1486

7. Shin, H., Moon, B., Lee, S.: Adaptive and incremental processing for distance join
queries. IEEE Trans. on Knowledge and Data Engineering 15 (2003) 1561–1578

8. Hjaltson, G., Samet, H.: Distance browsing in spatial databases. ACM Transactions
on Database Systems 24 (1999) 265–318

9. Feng, J., Mukai, N., Watanabe, T.: Multi-level transportation network adaptable
to traffic navigation. Proc. of IEA/AIE 2004, (2004) 164–169

10. Feng, J., Watanabe, T.: A fast search method of nearest target object in road
networks. Journal of the ISCIE 16 (2003) 484–491

11. Guttman, A.: R-trees: A dynamic index structure for spatial searching. Proc. of
ACM SIGMOD’84 (1984) 47–57

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 372 – 375, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Approach for Integrating Analysis Patterns
and Feature Diagrams into Model Driven Architecture

Roman Filkorn and Pavol Návrat

Institute of Informatics and Software Engineering,
Faculty of Informatics and Information Technologies,

 Slovak University of Technology,
Ilkovicova 3, SK-84216 Bratislava, Slovakia

{filkorn, navrat}@fiit.stuba.sk

Abstract. Knowledge-capturing approaches cover a wide variety of software
engineering activities, and this variety impedes to find relations and integration
between them. One of movements towards knowledge reuse and integration is
Model Driven Architecture, a model-centric approach based on platform-
specific abstractions and model transformations. We attempt to integrate
knowledge captured in Analysis Patterns extended with Feature Modelling, and
we propose a method for the initial steps in MDA approach.

1 Introduction

Techniques capturing software engineering best practices knowledge in a concept of
a pattern matured to the state when new opportunities arise. The reuse of proved
solutions is applied into consecutive development activities. Possible integration
platform is OMG’s Model Driven Architecture (MDA) [5]. The competence to
navigate in a space of patterns’ inherent variability and the potential to integrate the
knowledge from the various patterns is still open and a challenge to research.

2 Developing PIMs – Platform Independent Models

Analysis patterns constitute an attempt to reuse vertical domain knowledge, usable as
a base for building a PIM. To be reusable, the patterns are represented in a highly
abstract and general form. The patterns abstract and generalize platform specific
details that have to be supplemented (concretised, specialized) in the process of pat-
tern instantiation. The patterns cover a lot of variability inherent in the particular
context and the problem they solve, and that variability needs to be more appropri-
ately documented. It is the accurate selection and order of specializations and con-
cretisations, along with proper variation and commonality localization that has impact
on the successfulness of a software development process.

 For the purpose of our study, we chose Fowler’s Corporate Finance analysis pat-
terns in their published form (in Fig.1, adapted from [1]). To systematically cope with
the granularity of analysis patterns catalogues, the abstraction, the generality and the
variability of analysis pattern, we formulated following steps:

 An Approach for Integrating Analysis Patterns and Feature Diagrams 373

Fig. 1. Corporate Finance Analysis Patterns (adapted from [1])

1. Find an appropriate analysis patterns schema.
2. For each schema’s pattern, decide if it shall be used, choose from alternatives.
3. For each selected pattern, abstract from details not indicated in the system context.
4. From the selected and modified patterns, develop a single model; according to the

patterns definition, distinguish carefully the knowledge and the operational level.
5. Review the model; search for new relationships that could be abstracted.
6. Replace the points that play a significant role in the original model and should be

substituted with specifics from the context of the problem that is being solved.
7. Review the model to identify variation points.

For each variation point, carry out feature modelling process; consider a single fea-
ture model that covers all principal concepts and their features.

The steps 7 and 8 introduce feature modelling process (see [2]) into the develop-
ment of PIMs. The variation points are not explicitly documented in the analysis pat-
tern documentation. Modelling variability is helpful for two levels: for the analysis
pattern itself (results as an additional reusable knowledge), and for the concrete con-
text (in specifying other aspects of the system). Omitting a discussion, we show an
example in Fig. 2.

Representing multiple variation points in a single feature diagram can lead to an
overwhelming set of diagram objects, lowering diagram’s comprehensibility and
clarity. We enriched out feature diagrams with a new notation for feature nodes that
represent variability points but the diagram abstracts the details away.

Fig. 2. Feature diagram with introduced notation

3 Transformation into PSMs – Platform Specific Models

In Table 1, we make an attempt in stating the marking method in a more formal way.
The source models are the developed PIM and additional feature diagrams. The

374 R. Filkorn and P. Návrat

method marks and separates a data-persistence level and an object-oriented realiza-
tion. The specification and the separation are better done in single transformation step
relating the persistence level diagram and the design class diagram because they both
source from a single analysis model and they are strongly interdependent. We view
the marking process as a creative process with an opportunity to find and model addi-
tional concepts and relationships, therefore influencing both diagrams.

Table 1. Proposed transformation method

Source
Platform
Models

Analysis patterns, documenting the knowledge of the problem domain
Feature models, capturing additional information about commonality and
variability in the analysis model

Target
Platform
Models

Persistent Data Class diagram, defining persistent data entities and logical
view relationships
Design Class diagram, defining the framework for representing Domain
Model in the application

Trans-
formation

Steps

1. Mark the PIM According to the Level
Attach the “level” mark (with values “operational”, or ”knowledge”) to
all concepts according to the PIM

2. Mark the PIM According to the Feature Models
Attach the “variation point” mark according to the identified variation
points in the developed Feature Models

3. Mark the PIM Towards the Persistent Data Model
Select and attach marks on persistent constituents

4. Mark the PIM Towards the Design Diagram
Select and attach marks on concepts on design level

5. Perform the Transformations

In our ongoing research, we analyse and relate used modelling concepts and pro-
pose modelling alternatives for a mapping into both persistent level and object-
realization model. We attempt to state a set of rules for marking processes in steps 3
and 4 of our method. A general outline of the marking process method is defined as
follows:

1. If not empty, select first from the list of non-marked concepts, otherwise end
2. According to „level“ mark, choose the set of applicable marks
3. From the set of applicable marks, choose a mark and attach it to the concept
4. Add the concept to the list of marked concepts
5. According to the set of rules, resolve all rules applicable to the new situation
6. Continue with step 1.

For both marking processes, we are working to specialize the three open points: a
set of applicable marks, selection of an appropriate mark, and a set of rules. An ex-
ample of a rule is in Fig. 3.

if concept.hasMark(“level”, “operational”) and
 concept.hasMark(“variationpoint”)
then concept.attachMark(“enumeration”)

Fig. 3. Example from the set of rules

 An Approach for Integrating Analysis Patterns and Feature Diagrams 375

It is essential to carefully choose the concepts that will have a persistent mapping
with a correct mechanism. To quantify the variability of the concepts in the hierarchy,
we use feature modelling technique. The concepts from the analysis model knowledge
level represent valuable abstractions, even though their persistence might not be
needed. It results in a modified PIM in the way that reduces or concretises the gener-
alization hierarchies. The marking process towards the object-realization level of the
analysis pattern is a promising area for reusing knowledge from design patterns. We
are professed to iterative, incremental, and interactive method from [3].

The method is not automatable and requires human developer, who performs the
steps and decides on designing questions not covered by it.

4 Conclusions and Future Work

We are working on a methodological framework for integration of various knowledge
capturing pattern approaches into the context of Model Driven Development. One can
anticipate that their tighter interconnection and integration would bring new qualities
and impulses for both the knowledge capturing techniques and the quality of software
development process.

We are considering switching to an UML-based representation of the knowledge
captured in the patterns. We continue in specifying and concretising open areas, i.e.
our proposed marking processes. We plan to develop a catalogue that will to some
extent help in automating analysis, design and generation of a software product.

Acknowledgements: The work reported here was partially supported by Slovak Sci-
entific Agency, grant No. VG 1/0162/03.

References

1. Fowler, M.: Analysis Patterns: Reusable Object Models. ISBN: 0201895420. Addison-
Wesley Professional (1996)

2. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
ISBN: 0201309777. Addison-Wesley Professional (2000)

3. Marko, V.: Template Based, Designer Driven Design Pattern Instantiation Support, In:
Proc. ADBIS 2004 (LNCS 3255), Budapest, Springer Verlag (2004)

4. Filkorn, R., Návrat, P.: Modeling Optimization Components for XML Processing, In: M.
Benes (ed.): Proc. of ISIM‘04, Ostrava, ISBN 80-85988-99-2, Stefan MARQ (2004).

5. Miller, J., Mukerji, J. (eds.): MDA Guide, accessible: http://www.omg.org/docs/omg/
03-06-01.pdf, OMG (2003)

Outerplanar Crossing Numbers of 3-Row
Meshes, Halin Graphs and Complete p-Partite

Graphs�

Radoslav Fulek1, Hongmei He2, Ondrej Sýkora2, and Imrich Vrťo3

1 Department of Computer Science, Comenius University, Mlynská dolina, 842 48
Bratislava, Slovak Republic

radkofulek@pobox.sk
2 Department of Computer Science, Loughborough University, Loughborough,

Leicestershire LE11 3TU, United Kingdom
{h.he, o.sykora}@lboro.ac.uk

3 Department of Informatics, Institute of Mathematics, Slovak Academy of Sciences,
Dúbravská 9, 841 04 Bratislava, Slovak Republic

vrto@savba.sk

Abstract. An outerplanar (also called circular, convex, one-page) draw-
ing of an n-vertex graph G is a drawing in which the vertices are placed
on a circle and each edge is drawn using one straight-line segment. We
derive exact results for the minimal number of crossings in any outer-
planar drawings of the following classes of graphs: 3-row meshes, Halin
graphs and complete p−partite graphs with equal size partite sets.

1 Introduction

Let G = (V, E) denote a graph and deg(v) denote the degree of v ∈ V . A drawing
of a graph G with vertices of the graph placed on a circle and the edges drawn
as straight-line segments is called outerplanar drawing of G. The outerplanar
crossing number ν1(G) is defined as the minimum number of pairs of crossing
edges over all outerplanar drawings of G [1] (to find the outerplanar crossing
number is NP-hard problem [2]).

We use this notation for outerplanar crossing number in accordance with the
k-page crossing number νk [4, 5]). There are other notations and terminologies
used for this quantity as circular, convex and one-page crossing number.

Let D(G) denote an outerplanar drawing of G and let ν1(D(G)) denote the
number of crossings in this drawing.

The only known exact result for outerplanar crossing numbers is in [3]. It
is shown for complete bipartite graphs and for example in the case that m
divides n, it holds that ν1(Km,n) = 1

12n(m− 1)(2mn− 3m− n) and in the case
m = n, ν1(Kn,n) = n

(
n
3

)
.

� This research was supported by the EPSRC grant GR/S76694/01 and by VEGA
grant No. 2/3164/23.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 376–379, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Outerplanar Crossing Numbers of 3-Row Meshes, Halin Graphs 377

In this short contribution we give the propositions on outerplanar crossing
numbers of the 3-row meshes, Halin graphs and complete p-partite, p ≥ 3, graphs
with equal sizes of the partite sets. One of the motivations for this kind of the
research is to provide graphs which can be used to test heuristics for low crossing
outerplanar drawings.

2 Meshes

Let Pm be an m-vertex path. Let Pm × Pn denote the m × n mesh graph. The
graph Pm × Pn is a union of m paths of type Pn (called rows) and n paths of
type Pm (called columns). Let us call the subgraph consisting of edges incident
to the first (last) two column vertices the comb, respectively.

Theorem 1. For any n ≥ 3,

ν1(P3 × Pn) =
{

2n− 3, if n is odd,
2n− 4, if n is even.

Proof. The order of vertices on the circle in an optimal drawing for even n is
given by the Hamiltonian cycle. For odd n the order is same, except the last
column, which follows the order of the last column in even case.

The lower bound is proved by induction on odd n. The cases n = 3, 4, 5 are
proved by using a computer. By using a computer we also proved that in any
drawing of P3 × P4 every comb contains at least 4 crossings. Suppose that the
claim holds for some odd n ≥ 5. Consider an optimal outerplanar drawing of
P3×Pn+2. By deleting the edges of the 4-th,...,(n+1)-st column we get a graph
homeomorphic to P3 × P4. we conclude that the left comb of P3 × P4 contains
at least 4 crossing. It means that there are at least 4 crossings on the comb
edges in the drawing of P3×Pn+2. By deleting the comb edges we get a drawing
D(P3 × Pn). By the inductive assumption we have

ν1(P3 × Pn+2) ≥ 4 + ν1(D(P3 × Pn)) ≥ 4 + 2n− 3 = 2(n + 2)− 3.

Proof for even n is similar.

3 Outerplanar Crossing Numbers of Halin Graphs

A Halin graph G consists of a tree with m leaves connected by a cycle, with no
vertices of degree 2 except the root.

Theorem 2. For a Halin graph G, with a tree with m leaves:

ν1(G) = m− 2 (1)

Proof. Lower bound.
Given a drawing of G, number the leaves of G on circle starting from root in
clockwise manner as u0, ...um−1. The leaves of the tree of G divide the circle

378 R. Fulek et al.

into m intervals of internal tree vertices which are either empty or contain some
vertices of the tree of G. Observe that any edge between vertices of two different
intervals cross at least 2 edges of the cycle of G. Further observe that an edge
incident with a leaf and a vertex from a non-neighbouring interval causes at
least one crossing on an edge of the cycle. Now, consider edges incident with leaf
vertices except u0 and um−1. Any leaf edge except edges incident with u0 and
um−1 must cause at least one crossing apart from the case when it is incident with
a vertex in the neighbouring intervals. Denote the vertex v. For every interval
there are at most two such leaves. As between the vertex v and the root exists a
unique path in the tree, there have to be an edge in this path crossing the cycle
at least twice. Thus we can assign to every leaf except u0 and um−1 at least one
crossing which implies at least m− 2 crossings in any outerplanar drawing of G.

Upper bound.
First we describe the construction of the order of the vertices. We assign a
type pre, in, or post to every vertex of G in the following way: the root will
be of type pre, the left most child of the root will be of type pre, the right
most child of the root will be of type post, rest of the children of the root will
be of type in. Type of deg(v) − 1 children a1, ...adeg(v)−1 of a vertex v, ex-
cept the root, is calculated as follows: if v is of the type in, then the children
a1, ...a$ deg(v)−1

2 %−1 and a$ deg(v)−1
2 %+2, ...adeg(v)−1 are of type in, a$ deg(v)−1

2 % are of
type post, a$ deg(v)−1

2 %+1 are of type pre, if v is of type pre, a2, ...adeg(v)−1 are of
type in, a1 are of type pre, if v is of type post, then the children a1, ...adeg(v)−2
are of type in, adeg(v)−1 are of type post. Define p(v) the sequence of ver-
tices of subtree with root v as follows (children of v are the same as above):
if v is of type pre then p(v) = v, p(a1), p(a2), ...p(adeg(v)−1). If v is of type
post then p(v) = p(a1), p(a2), ...p(a(deg(v)−1)), v. If v is of type in then p(v) =
p(a1), ...p(a$ deg(v)−1

2 %), v, p(a$ deg(v)−1
2 %+1), ...p(adeg(v)−1).

This drawing of the Halin graph contains exactly m − 2 crossings. For lack
of space, we skip the proof of this.

4 Complete p-Partite Graphs Kn(p)

In this section we prove an exact result for the outerplanar crossing number of
complete p-partite graphs with equal sizes of the partite sets. Denote

Kn(p) = Kn, n, ..., n︸ ︷︷ ︸
p

.

Theorem 3. For the complete p-partite graph with n vertices in each partite
set

ν1(Kn(p)) = n4
(

p

4

)
+

1
2
n2(n− 1)(2n− 1)

(
p

3

)
+ n

(
n

3

)(
p

2

)
.

Outerplanar Crossing Numbers of 3-Row Meshes, Halin Graphs 379

Proof. First we use 2 known facts shown in [3].

ν1(Kn,2n) =
1
6
n2(n− 1)(4n− 5) (2)

ν1(Kn,n) = n

(
n

3

)
(3)

Lower bound. In every drawing of Kn(p) there are 3 types of crossings of
edges: for i = 2, 3, 4, in the i-coloured crossing, the endvertices of the corre-
sponding edges are coloured by i colours.

The number of the 2-coloured crossings is clearly
(
p
2

)
ν1(Kn,n).

The number of 3-coloured crossings is clearly at least p
(
p−1
2

)
(ν1(Kn,2n) −

2ν1(Kn,n)). We have p possibilities to choose the colour c1 which appears twice
among the endvertices of a crossing and

(
p−1
2

)
possibilities to choose two distinct

colours c2 and c3. Then we identify the colours c2 and c3, which gives the total
number of ν1(Kn,2n) crossings. However this number contains the numbers of 2-
coloured crossings given by the colours c1, c2 and c1, c3 which must be subtracted.

The number of the 4-coloured crossings is
(
p
4

)
n4. Realize that any four vertices

of distinct colours produce one 4-coloured crossing. Summing up the numbers of
all 3 types of crossings and substituting (2) and (3) we get the lower bound.

Upper bound. Place the vertices of the partite sets evenly around a cycle, i.e.,
the vertices of every partite set form a regular n-gon. Then one can check, that
the number of i-coloured crossings, for i = 2, 3, 4, is the same as in the lower
bound proof.

References

1. Kainen, P.C., The book thickness of a graph II, Congressus Numerantium, 71 (1990),
121–132.

2. Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T., On the NP -completeness
of a computer network layout problem, in: Proc. IEEE Intl. Symposium on Circuits
and Systems 1987, IEEE Computer Society Press, Los Alamitos 1987, 292–295.

3. Riskin, A., On the outerplanar crossing numbers of Km,n, Bulletin ICA 39 (2003),
7-15.

4. Shahrokhi, F., Sýkora, O., Székely, L.A., Vrťo, I., Crossing numbers: bounds and ap-
plications, in: Intuitive Geometry, Bolyai Society Mathematical Studies 6, (I. Bárány
and K. Böröczky, eds.), Akadémia Kiadó, Budapest 1997, 179–206.

5. Shahrokhi, F., Sýkora, O., Székely, L.A., Vrťo, I., The book crossing number of
graphs, J. Graph Theory, 21 (1996), 413–424.

Fast Bit-Vector Algorithms for Approximate
String Matching Under Indel Distance

Heikki Hyyrö1, Yoan Pinzon2,�, and Ayumi Shinohara1,3

1 PRESTO, Japan Science and Technology Agency (JST), Japan
helmu@cs.uta.fi

2 Department of Computer Science, King’s College, London, UK
pinzon@dcs.kcl.ac.uk

3 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
ayumi@i.kyushu-u.ac.jp

Abstract. The approximate string matching problem is to find all lo-
cations at which a query p of length m matches a substring of a text t of
length n with at most k differences (insertions, deletions, substitutions).
The fastest solutions in practice for this problem are the bit-parallel NFA
simulation algorithms of Wu & Manber [4] and Baeza-Yates & Navarro
[1], and the bit-parallel dynamic programming algorithm of Myers [3]. In
this paper we present modified versions of these algorithms to deal with
the restricted case where only insertions and deletions (called indel for
short) are permitted. We also show test results with the algorithms.

1 IndelMYE Algorithm

The bit-parallel approximate string matching algorithm of Myers [3], MYE, is
based on the classical dynamic programming approach where a (m+1)× (n+1)
matrix D is computed using the well-known recurrence Di,j = min {Di−1,j−1 +
δ(pi, tj), Di−1,j , Di,j−1}, subject to the boundary condition D0,j = 0 and Di,0 =
i, where δ(pi, tj) = 0 iff pi = tj , and 1 otherwise. The solution to the approximate
string matching problem is all the locations j where Dm,j ≤ k. MYE is based
on the observation that the vertical and horizontal differences between adjacent
cells in D (i.e. Di,j −Di−1,j and Di,j −Di,j−1) have the value -1, 0, or 1, and
the diagonal differences (i.e. Di,j−Di−1,j−1) have the value 0 or 1. This enables
the algorithm, as presented in [2], to use the following length-m bit-vectors to
represent the vertical, horizontal and diagonal differences:

— Pvi = 1 iff Di,j −Di−1,j = 1, Nvi = 1 iff Di,j −Di−1,j = −1
— Phi = 1 iff Di,j −Di,j−1 = 1, Nhi = 1 iff Di,j −Di,j−1 = −1
— Zdi = 1 iff Di,j = Di−1,j−1

The values of Pv and Nv are known for the initial case j = 0. The steps of
the algorithm at text position j are as follows. First the new diagonal vector Zd′

� Part of this work was done while visiting Kyushu University. Supported by PRESTO,
Japan Science and Technology Agency (JST).

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 380–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fast Bit-Vector Algorithms 381

is computed by using Pv, Nv and M(tj), where for each character λ, M(λ) is
a precomputed length-m match vector where M(λ)i = 1 iff pi = λ. Then the
new horizontal vectors Ph′ and Nh′ are computed by using Zd′, Pv and Nv.
Finally the new vertical vectors Pv′ and Nv′ are computed by using Zd′, Nh′

and Ph′. The value of the dynamic programming cell Dm,j is maintained during
the process by using the horizontal delta vectors (the initial value is Dm,0 = m).
A match of the pattern with at most k errors is found whenever Dm,j ≤ k.

The dynamic programming recurrence for indel distance is Di,j = (if pi =
tj then Di−1,j−1 else min{Di−1,j , Di,j−1}), which makes also the case Di,j −
Di−1,j−1 = 2 possible. To help deal with this complication, we will use the
following additional vertical and horizontal zero vectors.

— Zvi = 1 iff Di,j −Di−1,j = 0, Zhi = 1 iff Di,j −Di,j−1 = 0
Naturally Zv = ∼ (Pv | Nv) and Zh = ∼ (Ph | Nh), where ∼ is the bit-wise
complement operation. In the following we describe the steps of our algorithm
for updating the bit-vectors at text position j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

i.) The new diagonal vector Zd′ is computed exactly as in MYE. That is,
Zd′=(((M(tj) & Pv) + Pv) ∧ Pv) | M(tj) | Nh.
ii.) The new horizontal zero vector Zh′ is computed by using Pv, Zv and Zd′.
By inspecting the possible difference combinations, we get the formula Zh′

i =
(Zh′

i−1 & Pvi & (∼ Zd′
i)) | (Zvi & Zd′

i). We use a superscript to denote bit rep-
etition (e.g. 001011 = 021012 = 0(01)21). The self-reference of Zh′ implies that
each set bit Zh′

i=1 in Zh′ can be assigned into a distinct region Zh′
a..b=1b−a+1,

where 1 ≤ a ≤ i ≤ b ≤ m, Zva & Zd′
a=1 or a=1, Zh′

r−1 & Pvr & (∼ Zd′
r)=1

for r ∈ a + 1 . . . b, and Zh′
b+1 & Pvb+1 & (∼ Zd′

b+1)=0. We also notice that the
conditions Zva & Zd′

a=1 and Pvr & (∼ Zd′
r)=1 for r ∈ a + 1 . . . b imply that

Zh′
r=1 for r ∈ a . . . b. If we shift the region a + 1 . . . b of set bits one step right

to overlap the region a . . . b − 1 and perform an arithmetic addition with a set
bit into position a, then the bits in the range a . . . b − 1 will change from 1 to
0 and the bit b from 0 to 1. These changed bits can be set to 1 by performing
XOR. From this we derive the final formula: Zh′=(((Zv & Zd′) | ((Pv & (∼
Zd′)) & 0m−11)) + ((Pv & (∼ Zd′)) >> 1)) ∧ ((Pv & (∼ Zd′)) >> 1).
iii.) The new horizontal vector Nh′ is computed as in MYE by setting Nh′ =
Pv & Zd′, after which we can also compute Ph′= ∼ (Zh′ | Nh′).
iv.) The new vertical vector Zv′ is computed by using Zh′, Ph′, Zd′ and Zv. We
notice that Di,j=Di−1,j iff either Di−1,j=Di−1,j−1=Di,j , or Di,j−1=Di−1,j−1
and Di−1,j=Di−1,j−1 + 1. In terms of the delta vectors this means that Zv′

i=1
iff Zh′

i−1 & Zd′
i=1 or Ph′

i−1 & Zvi & (∼ Zd′
i)=1. From this we get the formula

Zv′=(((Zh′ << 1) | 0m−11) & Zd′) | ((Ph′ << 1) & Zv & (∼ Zd′).
v.) The new vertical vector Nv′ is computed as in MYE by setting Nv′=(Ph′ <<
1) & Zd′, after which we can also compute Pv′= ∼ (Zv′ | Nv′).

Fig. 1 (upper left) shows a high-level template for the bit-parallel algorithms, and
Fig. 1 (lower left) shows the complete formula for computing the new difference

382 H. Hyyrö, Y. Pinzon, and A. Shinohara

Fig. 1. Bit-parallel approximate string matching under indel distance: a template (up-
per left), indelMYE (lower left), indelWM (upper right), and indelBYN (lower right)

vectors at text position j. The running time of indelMYE is O(�m/w	n) as a
vector of length m may be simulated in O(�m/w) time using O(�m/w) bit-
vectors of length w. The cost of preprocessing is O(σ�m/w	+ m).

2 Bit-Parallel NFA Simulation Algorithms: IndelWM
and IndelBYN

The bit-parallel approximate string matching algorithms of Wu & Manber [4]
(WM) and Baeza-Yates & Navarro [1] (BYN) simulate a non-deterministic finite
automaton (NFA), R, by using bit-vectors. R has (k + 1) rows, numbered from
0 to k, and each row contains m states. Let Rd,i denote the ith state on row d
of R. Rd,i is active after processing the jth text character iff Di,j ≤ d in the cor-
responding dynamic programming matrix D, and so an approximate occurrence
of the pattern is found when the state Rk,m is active.

WM uses (k + 1)�m/w	 and BYN �(k + 2)(m − k)/w	 bit-vectors of length
w to encode R. Both perform a constant number of operations per bit-vector
at text position j. For reasons of space, we do not discuss here further de-
tails of these algorithms. We just note that the bit-vector update formulas for

Fast Bit-Vector Algorithms 383

 0.2

 0.4

 0.6

tim
e

(s
ec

)
DNA
m = 8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9 DNA

m = 16

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2 DNA
m = 32

 0

 0.2

 0.4

 0.6

tim
e

(s
ec

)

WSJ
m = 8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9 WSJ

m = 16

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8 WSJ

m = 32

 0

 0.2

 0.4

 0.6

 1 2 3 4 5 6

tim
e

(s
ec

)

k

Random,
m = 8

σ= 120

indelWM

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 1 3 5 7 9 11 13

k

Random,
m = 16

σ = 120

indelBYN

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 1 5 9 13 17 21 25 29

k

Random,
m = 32

σ = 120

indelMYE

Fig. 2. The average time for searching in a ≈ 20 MB text. The first row is for DNA (a
duplicated yeast genome), the second row for a sample of Wall Street Journal articles
from TREC-collection, and the third row for random text with alphabet size σ = 120

both correspond to the dynamic programming recurrence, where each edit op-
eration has a distinct part in the formula. Hence the modification for indel
distance is straightforward: we only need to remove the part for substitution.
Fig. 1 (upper right) shows indelWM and Fig. 1 (lower right) shows indelBYN:
our versions of WM and BYN, respectively, that are modified for indel distance.
The running time of indelWM is O(k�m/w	n), and its time for preprocessing
is O(σ�m/w	+ m). The running time of indelBYN is O(�(k + 2)(m− k)/w	n),
and its time for preprocessing is O(σ�(k + 2)(m− k)/w	+ m).

3 Experiments

We implemented and tested the three bit-parallel variants for approximate string
matching under indel distance. IndelWM and IndelMYE were implemented fully
by us, and IndelBYN was modified from a code by Baeza-Yates & Navarro. The
computer was a 3.2Ghz AMD Athlon64 with word size w=32, 1.5 GB RAM,
Windows XP, and MS Visual C++ 6.0 compiler using high optimization. The
patterns were selected randomly from the text, and for each (m, k) we recorded
the average time over searching 100 patterns. Fig. 2 shows the results.

384 H. Hyyrö, Y. Pinzon, and A. Shinohara

References

1. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,
23(2):127–158, 1999.

2. H. Hyyrö. Explaining and extending the bit-parallel approximate string matching
algorithm of Myers. Technical Report A-2001-10, University of Tampere, 2001.

3. G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395–415, 1999.

4. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,
35(10):83–91, October 1992.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 385 – 389, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Feature Selection by Reordering*

Marcel Jirina1 and Marcel Jirina Jr.2

1 Institute of Computer Science, Pod vodarenskou vezi 2,
182 07 Prague 8 – Liben, Czech Republic

marcel@cs.cas.cz
2 Center of Applied Cybernetics, FEE, CTU Prague, Technicka 2,

166 27 Prague 6 – Dejvice, Czech Republic
jirina@fel.cvut.cz

Abstract. Feature selection serves for both reduction of the total amount of
available data (removing of valueless data) and improvement of the whole be-
havior of a given induction algorithm (removing data that cause deterioration of
the results). A method of proper selection of features for an inductive algorithm
is discussed. The main idea consists in proper descending ordering of features
according to a measure of new information contributing to previous valuable set
of features. The measure is based on comparing of statistical distributions of in-
dividual features including mutual correlation. A mathematical theory of the
approach is described. Results of the method applied to real-life data are shown.

1 Introduction

Feature selection is a process of data preparation for their consequential processing.
Simply said, the feature selection filters out unnecessary variables. There are two
aspects for feature selection. The first one is the time requirement for processing of
large amount of data during learning [6]. The other one is finding that results of the
induction algorithm (classification, recognition or also approximation and prediction)
may be worse due to the presence of unnecessary features [2].

There exist two essentially different views, so called filter model and wrapper
model [5]. In filter model features are selected independently on the induction algo-
rithm. Wrapper models (methods) are tightly bound to an induction algorithm. An-
other approach can be more quantitative stating that each feature has some “weight”
for its use by induction algorithm. There are lots of approaches trying to define and
evaluate feature weights, usually without any relation to induction algorithm, e.g. [2],
[6], [7].

2 Problem Formulation

The suggested method is based on a selection of relevant (appropriate) feature set
from a given set. This can be achieved without the need of a metric on the feature

* The work was supported by Ministry of Education of the Czech Rep. under project

LN00B096.

386 M. Jirina and M. Jirina Jr.

sets. In fact, a proper ordering of features or feature sets is sufficient. The measure for
the ordering need not be necessarily a metrics in pure sense. It should give a tool for
evaluating how much a particular feature brings new information to the set of features
already selected.

3 The Method

The suggested method considers features for a classification task into two classes (0
and 1). The method for stating the measure of feature weight utilizes comparisons
of statistical distributions of individual features and for each feature separately for
each class. Comparison of distributions is derived from testing hypothesis whether
two probability distributions are from the same source or not. The higher the prob-
ability that these distributions are different the higher is the influence of particular
feature (variable) to proper classification. In fact, we do not evaluate correlation
probability between a pair of features, but between subsets corresponding to the
same class only.

After these probabilities are computed, the ordering of features is possible. The
first feature should bring maximal information for good classification, the second
one a little less including ("subtracting") also correlation with the first, the third
again a little less including correlations with two preceding features etc.

The standard hypothesis testing is based on the following considerations: Given
some hypothesis, e.g. two distributions are the same, or two variables are corre-
lated. To this hypothesis some variable V is defined. Next, a probability p is com-
puted from value of V often using some other information or assumptions. Then
some level (threshold) P is chosen. If p ≥ P the hypothesis is assured, otherwise
rejected. Sometimes instead of p the 1 – p is used and thus P and the test must be
modified properly.

The logic used in this paper is based on somethig "dual" to the considerations
above: Let q = 1 – p be some probability (we call it the probability levels of rejec-
tion of hypothesis), Q = 1 – P be some level. If q < Q the hypothesis is assured,
otherwise rejected. The larger q, the more likely the hypothesis is rejected (for the
same level Q or P). In fact, the weights assigned to individual features are probabil-
ity levels q related to rejection of hypotheses that distributions are the same or vari-
ables are correlated.

Let Fi be a feature. For the first ordering of individual features F1, F2, ... as to
their influence on proper classification we use the probability levels of rejection pii
of the hypothesis that probability distributions of feature the Fi for class 0 and for
class 1 are the same. The pii is based on a suitable test, e.g. Kolmogorov - Smirnov
test [8] or Cramér – von Mises test [1]. No correlation of features is considered for
this first ordering.

To include influence of correlations let pij0 and pij1 be probability levels of rejec-
tion that distributions of variables for class 0 are correlated and that distributions of
variables for class 1 are correlated, respectively. Taking all probability levels to-
gether, we have two triangular matrices, one for pij0 and another for pij1, i,j = 1, 2,
..., n. All results of pairwise distribution comparisons or correlations can be written
in square matrix n×n as follows

 Feature Selection by Reordering 387

=

nnnn

n

n

ppp

ppp

ppp

M

2111

0222211

0112011

.

 In this matrix in diagonal entries are probability levels of rejection of hypothesis
that that for feature of a given index and for class 0, and class 1 the distributions are
the same. In the upper triangular part there are probability levels pij0 for class 0, and in
the bottom triangular part the probability levels pij1 for class 1.

In the beginning the ordering of features is arbitrary. We now sort rows and col-
umns in descending order according to diagonal elements pii of the matrix M. After it,
first, we reassign indexes according to this ordering. The first feature now is a feature
having the largest difference in distributions for both classes. The second feature has
lesser difference in distributions for both classes and can be possibly somehow corre-
lated to the preceding feature, etc.. Then, first, we state correlation coefficient for
class 0 of variables 1 and 2, second, correlation coefficient for class 1 of variables 1
and 2 getting then probability levels p120 and p211 of rejection that distributions are
correlated. The lesser these probabilities, the stronger correlation between features F1
and F2 exists.

Let us define independence level of feature Fi on preceding features Fk, k < i:

∏
−

=

=
1

1
10

i

k
kiikiii pppπ . (1)

According to this formula the probability level of rejection that distributions for
class 0 and 1 are the same is modified by measure of dependence on preceding vari-
ables. For calculation of probability levels 0ikp and 1kip we use a standard approach

[3] based on the fact that for small number of samples a nonzero correlation coeffi-
cient is found.

We associate these probability levels to corresponding rows and columns and again
we sort rows and columns according to πi in descending order. After it we again com-
pute πi according to (1) using new ordering and new indexing of variables. This step
is repeated until no change in ordering occurs. Fast convergence of this process was
found. By this procedure features are reordered from original arbitrary ordering to
new ordering such that the first feature has the largest πi , and the last the smallest πi.

4 Results

The suggested method is demonstrated on a task of feature ordering of eight UCI
MLR real-life databases: Heart, Vote, Splice, Spam, Shuttle, Ionosphere, German, and
Adult [9]. Results after feature reordering are shown in Fig. 1.

388 M. Jirina and M. Jirina Jr.

5 Conclusion

We have presented a procedure for evaluating feature weights based on the idea that
we need not evaluate subsets of features or build some metrics in the space of feature
subsets. Instead of metrics some ordering would suffice. This is much weaker condi-
tion then metric. In fact, we need ordering of features from the viewpoint of the abil-
ity of feature to bring something new to the set of features already selected. If features
are properly ordered we need not measure any distance. Knowledge that one feature is
more important than the other should be sufficient. Having features already ordered,
the question on proper feature set selection is reduced from combinatorial complexity
to linear or at worst polynomial complexity – depending on the induction algorithm.

Fig. 1. Dependence of the πi on feature number after reordering for the eight databases

References

[1] Csörgö, S., Faraway, J.J.: The Exact and Asymptotic Distributions of Cramér-von Mises
Statistics. J.R. Statist. Soc. B vol. 58, No. 1 (1996) 221-234

[2] Dong, M., Kothari, R.: Feature subset selection using a new definition of classifiability.
Pattern Recognition Letters 24 (2003) 1215–1225

[3] Hátle, J, Likeš, J.: Basics in probability and mathematical statistics (in Czech),
SNTL/ALFA Praha (1974)

[4] Jirina, M., Jirina,M.,jr.: Feature Selection By Reordering according to their Weights.
Technical Report No. 919, Institute of Computer Science AS CR, November 2004, 9 pp.
http://www.cs.cas.cz/people/homepages/jirina_marcel.shtml

[5] John, J.K., Kohavi, R., Pfleger, K.: Irrelevant features and the Subset Selection problem.
In: Machine Learning: Proc. of the Eleventh Int. Conf. ed. Cohen,W., Hirsh,H., Morgan
Kaufmann Publishers, San Francisco, Ca., USA (1994) 121-129

 Feature Selection by Reordering 389

[6] Koller, D., Sahami, M.: Toward Optimal Feature Selection. Proc. of the Thirteenth Int.
Conf. on Machine Learning. Morgan Kaufmann Publishers, San Francisco, Ca., USA,
Morgan-Kaufman (1996) 284-292

[7] Last, M., Kandel, A., Maimon, O.: Information-theoretic algorithm for feature selection.
Pattern Recognition Letters 22 (2001) 799-811

[8] Smirnov, N.: Table for estimating the goodness of fit of empirical distributions, Annals of
Math. Statist. 19 (1948) 279-281

[9] UCI Repository of Machine Learning Databases. http//www.ics.uci.edu/~mlearn/
MLRepository.html

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 390 – 393, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Management Scheme for the Basic Types in
High Level Languages

Fritz Mayer-Lindenberg

Technical University of Hamburg-Harburg (TUHH)
Schwarzenbergstrasse 95, D21073 Hamburg

mayer-lindenberg@tuhh.de

Abstract. This note describes a type concept for the basic data types handled in
the applications of digital systems, numbers and bit fields, which are usually
predefined in higher level languages and serve as the basis for application spe-
cific data types and classes. It has been implemented in a real-time language for
parallel embedded systems and is motivated by the fact that such systems may
have to use a multitude of application-specific number types. The type concept
actually applies to programming languages for all classes of applications. It pro-
poses the use of an abstract data type of numbers for which the various enco-
dings of numbers provide implementations. This simple approach not only
allows non-standard encoding types to be added as needed but also provides
common formats for input and output and derived numeric data types that aren’t
bound to a specific encoding. Related to the handling of the basic data types is a
conversion policy. For bit fields, conversions are substituted by word number
changes of multi-word codes. Finally, the abstract number type can be used to
simplify the related typing of functions that no longer need to specify the
encoding of all their arguments and results.

1 Basic Data Types in Programming Languages

Abstractly speaking, a data type is a set M [1]. M may be defined through enumera-
tion, through a set of operations and their properties (this holds for the set of natural
numbers), or through other properties and constructions (e.g. in the case of the real
numbers). Digital systems process bit fields (finite sequences of bits), and all abstract
data types to be supported must first be encoded by special sets of bit fields.

An important special case is the encoding of numbers by bit fields. For the sake of
efficiency, codes of a fixed word length are preferred. If C is the finite set of size n bit
fields representing numbers through some encoding, a two-argument arithmetic ope-
ration would only be defined on a subset D ⊂ C×C and take values in C. For the pur-
pose of error checking, it can be extended to all of C×C by mapping the complement
of D to some extra error code ‘F’.

For the current imperative and object-oriented languages [2] there is a de-facto
standard for the provided data types. In C, these are ‘integer’ (16-bit or 32-bit twos
complement numbers), ‘char’ (8-bit unsigned numbers), ‘float’ (32-bit IEEE floating
point numbers), ‘double’ (same for 64-bit), and ‘bool’ (with the elements ‘true’,
’false’). ‘integer’ and ‘float’ are actually bit field types. The C integer type even
provides the bit field ‘and’, ‘or’ and ‘not’ operations and substitutes the true integer

 A Management Scheme for the Basic Types in High Level Languages 391

operations (which are defined only partially) by modulo operations. Conversions
between integers and floating point are inserted automatically. They round a floating
point number to the closest integer (i.e. perform an invisible, non-trivial operation).
Starting from the basic types, Cartesian product types can be constructed. Object-
oriented languages use class definitions also including the operations to be performed
on the Cartesian product types, and the notion of abstract data types for such. An
abstract data type for the numbers isn’t provided, however (except for some function-
nal languages using integers of unlimited size).

The data type handling concept proposed in this work was introduced for the real-
time language -Nets developed at the TUHH [3]. It starts by extending the use of
abstract data types to the base type of numbers to neatly distinguish between the
abstract num-ber type and the bit field types implementing it. It supports application
specific enco-dings of numbers on special processors, but has other advantages
common to abstract data types as well that now get extended to the basic types.

2 The Number Type

The abstract number type NUM of -Nets is equipped with the basic operations on
numbers including the comparisons and some transcendental functions as well as
input and output formats for NUM literals. Conceptually, NUM is the set of
computable real numbers. NUM is used as a reference for the encoding types used by
the processors. As a first benefit from using NUM, the formats of NUM literals are no
longer related to any particular encoding. Output formats aren’t related to the
encoding types, as well. Integers can e.g. be output in an engineering format with a
reduced number of places. The use of the NUM type allows the specification of
numeric algorithms that can eventually be executed on every processor implementing
some encoding type.

The -Nets programming environment also provides a runtime environment and
permits the execution of NUM algorithms (functions) on the host workstation using a
selectable integer or floating point encoding. Thus the effect of choosing a particular
encoding can be investigated without having to redefine the algorithm.

The standard type extension concepts can be applied to the NUM type in order to
derive other types of interest. An abstract ‘complex’ data type useful for digital signal
processing applications is obtained as the Cartesian product type NUM×NUM. It is
predefined in -Nets as a derived data type. Input and output formats for the complex
type are couples of real numbers. The complex type is available to every processor
providing a NUM encoding. In a similar fashion, various other useful types such as
the ‘quaternion’ type used in computer graphics [4] can be defined without reference
to a particular encoding.

3 Bit Field Types and Conversions

Besides the NUM type, sets of bit fields need to be provided as the canonical data
types of the processors of the target, in particular, the sets of bit fields of a constant
size of 16 or 32, and selected basic Boolean operations on these, the common ‘and’,

392 F. Mayer-Lindenberg

‘or’ and ‘not’ operations and some primitives for implementing binary arithmetic. All
of these bit field types are considered to be subsets of the type BIN of all finite bit
fields. There are BIN literals that have different formats from NUM literals and are
used for input and output for every bit field type. It is therefore possible to specify the
binary code of a number, or to directly display it. Symbolic constants replacing
literals are only distinguished as being NUM or BIN constants.

The number encoding types are sets of bit fields, too, yet equipped with other
opera-tions, namely those implementing the NUM operations as partially defined
operations on the codes. The number encoding types don’t provide the Boolean
operations. NUM literals and constants are automatically encoded according to the
selected type. Some integer types have implementations in terms of bit field types
while others just have a behavioral definition. -Nets e.g. provides a predefined non-
standard 48-bit software floating point type defined in terms of basic 16-bit operations
on bit fields. Consequently it is available on every processor executing these 16-bit
operations. It uses a non-normalized floating point representation of numbers as
described in [11]. Applications specific number types can be defined in terms of
Boolean operation to define their behavior and to be able to used them in a
simulation, but be implemented differently on a target processor.

It is natural and the choice for -Nets to automatically convert between different
number codes representing the same abstract number. No conversions occur between
bit fields encoding numbers and raw bit fields. For bit field types not encoding
numbers, a different, non-standard ‘conversion’ scheme is employed (the term ‘con-
version’ doesn’t really apply). A bit field presented as n words of size k is simply con-
verted into n’ words if size k’ with n*k=n’*k’ (with a zero extension, if necessary),
leaving the total bit pattern unchanged. This faithful conversion scheme also applies
to communications between processors, in particular of multiword number codes, and
to input and output via ports of a reduced word size.

4 Function Types

Any choice of data types carries over to the storage objects for these, and to the
functions constructed from the elementary operations on the data types. The type of a
program function (with possible side effects) is defined through its input domain and
its output range. Starting from NUM and BIN, functions will be either numerical
functions on NUMn with values in NUMm for some n,m or bit field functions on BIN
with values in BINm. There are hardly applications mapping NUM arguments to BIN
elements of vice versa, except for the indexing of sequences of bit fields, or
controlling BIN operations through NUM comparisons. Then, (n,m) and the common
type T of its arguments and results define the type of a function. This approach
implies that functions on encoded numbers use a consistent encoding for all of their
arguments and results, and that functions have arbitrary yet fixed numbers of
arguments and results. Functions of a number encoding type T may still call functions
or read and write to variables of other number encoding types. Then conversions
occur. A restricted use of mixed types is needed for indexing purposes only.

As already the elementary operations and the implicit conversions, functions may
be incompletely defined. This is taken up systematically in -Nets by letting every

 A Management Scheme for the Basic Types in High Level Languages 393

function of type (n,m,T) also have a Boolean result indicating whether its output is
valid. Functions of type (n,0,T) only output this Boolean result and represent
relations. The Boolean results are uniquely used for the control flow, a failing
arithmetic operation causing e.g. a branch to an error handler. With this unification
there remains no need for an extra type ‘bool’ for the results of comparisons.

5 Summary

The proposed, quite basic type concept has the special features of

- distinguishing abstract data from their encodings
- numeric algorithms not depending on particular codes
- supporting processors specialized in non-standard data types
- defining a conversion scheme and word size transformations
- using the same formats and constants for all number codes
- carrying over abstract numeric data types to all encodings
- extending into a simple type system for functions and objects

Advantages of the proposed type system are its flexibility at the level of number
encodings and the support of a type to processor assignment for application specific
systems. Its use of abstract data types doesn’t involve runtime overheads and is
suitable for simple, embedded processors.

References

[1] J. Gruska, Foundations of Computer Science, Thomson Computer Press 1997
[2] R.W. Sebesta, Concepts of Programming Languages, Benjamin 1989
[3] F. Mayer-Lindenberg, Dedicated Digital Processors, Wiley 2004
[4] R. Ablamowicz et al, Lectures on Clifford Algebras, Birkhäuser-Verlag 2004
[5] D. E. Knuth, The Art of Computer Programming, Addison-Wesley 1981

Bayesian Networks in Software Maintenance
Management

Ana C.V. de Melo and Adilson de J. Sanchez

University of São Paulo (USP), Dep. of Computer Science, 05508 090, SP, Brazil
acvm@ime.usp.br Adilson.Sanchez@itau.com.br

Abstract. Managing software maintenance is rarely a precise task due
to uncertainties concerned with resources and services descriptions. Even
when a well-established maintenance process is followed, the risk of delay-
ing tasks remains if the new services are not precisely described or when
resources change during process execution. Also, the delay of a task at an
early process stage may represent a different delay at the end of the pro-
cess, depending on complexity or services reliability requirements. This
paper presents a knowledge based representation (Bayesian Networks)
for maintenance project delays based on specialists experience.

1 Introduction

The advances in technologies and the competitiveness of business products made
computational support essential to have products in time to market. Computa-
tional development became part of business strategy because business rules are
continuously changing and this can be rapidly acquired by computational sys-
tems. Changing business rules and its corresponding system implies in adapting
existing systems to accomplish new rules, the so called adaptive maintenance [8].
In this scenario, software maintenance process is essential to business products
competitiveness.

Despite of being widely studied and of interest to market, software mainte-
nance is still a complex and costly task. It is pointed out as one of the most
expensive tasks in software development and difficulties inherently to its execu-
tion is the main cause of software high costs. Having no maintenance plans or,
even when plans are established, having the plan schedule not achieved lead to
more costly maintenance projects [8]. Uncertainties in the maintenance process
drives to unpredictable situations hard to be recovered during project execution
[12, 13].

Due to uncertainties, project managers have to decide how to reconfigure
plans as project schedule fails. Replanning is a hard task: What to do to finish a
system in time? How much resource should be added in order to finish a delayed
project in time? Can we implement the system in a shorter time without drop-
ping its quality requirements? These and many other issues must be answered
when a project is replanned and, most time, managers use their own experience
(or feeling) to do that.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 394–398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bayesian Networks in Software Maintenance Management 395

In order to help in manage maintenance project delays, this paper presents
a technique to represent specialists knowledge about project development re-
garding delays. The main goal is to be able to calculate the probability of a
project being delayed during its execution. Managers can use this information
to replan a project in order to finish it in time. The forthcoming sections are as
follows: Section 2 presents a particular Bayesian Network for the delay propaga-
tion problem; and the last section is about limitations of the present work and
the effective use of this technique in software development.

2 A Bayesian Network to Help Software Maintenance
Management

Decision systems are concerned with a way of embedding knowledge in order
to make a mimic of human decisions [2, 4, 9]. This involves how to represent
knowledge and use such an information to make decisions. Software develop-
ment and maintenance require a plan to define which tasks and in which order
they must be performed [1]. The tasks execution involves people and resources
and, because of that, uncertainties in the plan execution emerge. Due to those
uncertainties, managers’ experience is, in general, the main information available
for replanning projects.

There is, nowadays, a set of techniques to represent and use knowledge as, for
example, belief networks and evidence theory [5]. Belief networks are graphical
structures to represent systems based on knowledge with a variety of theories.
Bayesian networks [3, 10, 7, 6, 5, 11] is one of these theories based on probabil-
ity theory. In Bayesian Networks, the probability distribution over the domain
variable is calculated by Bayes Theorem [7, 5, 10] presented in Appendix A.

The Bayesian network in the present work has as main goal establishing a
relationship between developers, software and tasks that can cause software de-
lay. All this information is taken from specialists and their experience on past
projects. The first step of building a Bayesian network is to identify software
development phases as much as the factors that influence each phase task. For
simplicity, only three macro-phases of maintenance development have been con-
sidered: definition, implementation and testing. In each of these phases, we may
have a set of factors that suggest the maintenance risk as much as the probability
of project delay.

The first step of building the Bayesian network is recognising the context in
which risk management can be figured out: Platform Expertise- this variable
quantifies how many years the professionals involved in have on system platform;
System Expertise- concerned with the experience in the system itself; System
Documentation- this variable denotes if there exists (or not) a good system
documentation; Maintenance Complexity- it is related to how difficult is to
make the service required.

Once we have defined the relevant variables for risk management, we must
establish how they are related: how a variable can influence others when an
evidence is given. Maintenance Risk is influenced by all variables above. So,

396 A.C.V. de Melo and A. de J. Sanchez

if an evidence is given to one of the variables, the Maintenance Risk must be
updated. Moreover, if evidences are given to more than one variable, all these
must be considered to calculate the new Maintenance Risk probability. Its
calculation is given by Equation in Appendix A.

To calculate probabilities over Bayesian network variables, we must first es-
tablish the probability vector for each variable, the so called quantification part
of Bayesian networks (Figure 1). The probability related to each value means
that, in a general case, the value occurs for the associated variable with such a
frequency. For example, Platform Expertise ranges over three values interval:
the first one denotes the developers experience from “0 to 1” years with 20% of
probability, the second is from “1 to 3” with 40% of occurring, while the third
ranges over “3 to 5” years of experience with probability of 40%. The probability
assigned to each experience years interval comes from specialists information.

Fig. 1. Maintenance Risk and Delay Network

New variables together with their values and relations must be defined for
the delay propagation network. We want to answer a question like “ what is
the real delay of maintenance projects during their executions? ”. Again, the
first step is finding out variables relevant to project delays that can have values
measured. Since we work on possible delays of projects execution, the choice
of variables is based on common tasks performed on maintenance processes:
Definition Delay, Implementation Delay and Testing Delay. All of them
are calculated from probability distribution factors that influence each phase.
Here, a set of factors related to complexity, resources or whether the service
involved is critical or not to the system being maintained have been defined:
Definition Complexity, Codification Complexity, Testing Complexity,
New Resources?, Critical Maintenance, and Project that denotes delay
over the whole maintenance project.

The delay variables for each maintenance project phase, together with the
factors above, constitute the whole elements of the delay propagation network.
Since delay is realised after definition phase, maintenance risk can only influence
the implementation and testing phases. As such, the network is made of the re-
sulting Maintenance Risk variable influencing both Implementation Delay
and Testing Delay variables.

Bayesian Networks in Software Maintenance Management 397

3 Final Considerations

This paper presented a study on using Bayesian Belief Networks to help in
managing maintenance projects. In general, maintenance projects are hard to
follow their schedules and most of them have to be replanned during execution.
Delaying any project task for a certain time doesn’t mean that the whole project
is late for the same period. Despite of that, most management tools are not able
to calculate the real delays. In this project we have used Bayesian networks
to store probability distribution of project delays based on project features to
calculate a more accurate delay probabilities of maintenance projects.

The probability distribution for each environment variable embedded in the
network has been obtained from specialists information. Also, variables chosen
as “relevant” to determine project delays and maintenance risk are from spe-
cialists, regarding the network operational limitations. Acquiring data about
maintenance risk may be extended to other elements, such as details on work-
ing environment. However, some of them are hard or even impossible to be
measured. Because of this, they are not inserted as variable in our Bayesian
network. A similar analysis can be done to the delay propagation network.

For this application domain, we could detect two main problems in using
Bayesian Networks: information on factors probability comes mainly from spe-
cialists and the number of conditionally dependent variables must be controlled.
The former can be amended by keeping information about systems development
(maintenance). The last one is more related to how much a factor make influence
over its conditionally dependent factor: there must be considered a combination
of all dependent variables, and an accurate measure of influences is not trivial.

References

1. Project Management Instittute. A Guide to the Project Management Body of
Knowledge (PMBOK Guide). Project Management Institute, 2001.

2. P. Jackson. Introduction to Expert Systems. Addison-Wesley, Workingham, 1990.
3. F. Jensen. An Introduction to Bayesian Networks. Springer, 1996.
4. P. J. F. Lucas and Linda C. van der Gaag. Principles of Expert Systems. Addison-

Wesley, Workingham, 1991.
5. J. Pearl. Propabilistic Reasoning in Intelligent Systems. Networks of Pausible In-

ference. Morgan Kaufmann, Palo Alto, CA, 1988.
6. J. Pearl. A probabilistic calculus of actions. In R. Lopez de Mantaras and D. Poole,

editors, Proceedings of UAI 94, San Mateo, CA, 1994. Morgan Kaufmann.
7. J. Pearl and Stuart Russell. Bayesian networks. MIT Press, 2003.
8. Roger Pressman. Software Engineering. A practitioner’s approach. McGraw–Hill,

2004.
9. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-

tice Hall, 2003.
10. Linda C. van der Gaag. Bayesian belief networks: Odds and ends. The Computer

Journal, 39(2):97–113, 1996.
11. A. D. Wooff, M. Goldstein, and P. A. F. Coolen. Bayesian graphical models for

software testing. IEEE Transactions on Software Engineering, 28(5), 2002.

398 A.C.V. de Melo and A. de J. Sanchez

12. Hadar Ziv. Constructing bayesian-network models of software testing and mainte-
nance uncertainties. In Mary J. Harrold and Giuseppe Visaggio, editors, Proceed-
ings of ICSM’97, Bari, Italy, 1997. IEEE Computer Society.

13. Hadar Ziv, Debra J. Richardson, and René Klosch. The uncertainty principle in
software engineering. Technical Report 96-33, University of California, Irvine, CA,
USA, August 1996.

Appendix A

Bayes Theorem

P (H|e) =
P (e|H).P (H)

P (e)
(1)

H represents a hypothesis and e an evidence. The formula above denotes
the belief associated to hypothesis H as evidence e is given. Its calculation is
obtained by multiplication of the a priori hypothesis probability P (H) by the a
posteriori probability P (H|e).

P (e) = P (e|H).P (H) + P (e|¬H).P (¬H) (2)

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 399 – 402, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Multiagent System Aiding Information
Retrieval in Internet Using Consensus Methods

Ngoc Thanh Nguyen, Adam Blazowski, and Michal Malowiecki

Institute of Control and Systems Engineering,
Wroclaw University of Technology, Poland

thanh@pwr.wroc.pl

Abstract. This paper presents a multiagent system (called AGWI) which should
assist users in information retrieval in Internet. In this system consensus meth-
ods are applied for reconciling inconsistency of answers generated by agents for
the same query. The system has been created by means of platform IBM Aglets.

1 Introduction

For information retrieval in Internet, a very popular environment, there are still too
few of such systems. Menczer [5] has designed and implemented a public Web intel-
ligence called Myspiders, a multiagent system for information discovery in Internet.
By the tool he has shown that augmenting search engines with adaptive intelligent
search agents can lead to significant competitive advantages. In this paper we present
a multiagent system (called AGWI [2]) assisting information retrieval in Internet. Our
system differs from the one of Menczer in that it can solve conflicts of agents using
consensus methods. The general idea of AGWI is based on using not one but several
agents for a retrieval task. The advantage of this approach is that agents may use dif-
ferent resources and different search engines. Owing to this the answer will be more
complete and relevant. However, different agents may generate different results (as
rankings of URLs), thus they are in conflict. For conflict resolution we use consensus
methods [1][3][6] which is based on selecting such URLs’ ranking which has the
minimal sum of distances to those given by agents. The consensus, after checking its
consistency level, will be given to the user as the final answer. Each agent has its
knowledge base and a tool for processing.

2 The Aims and Description of the Project

Aglets are a product of a IBM research program, the aim of which is relied on creat-
ing a platform for mobile agents. As the results of this program the authors have cre-
ated in Open Source a packet named ASDK (Aglets Software Development Kit),
owing to which a user knowing Java can create agents for his needs [4]. There has
been arisen also project Aglets Community which has associated managers of free
Aglets servers.

400 N.T. Nguyen, A. Blazowski, and M. Malowiecki

The aim of this project is creating a multiagent system which should aid users in
information retrieval in Internet. In this system consensus methods are applied for
reconciling the differences in search results generated by agents. This approach en-
ables to solve the following two problems often occurring in information retrieval
processes in Internet:

• The first problem is related to low relevance degree of answers generated by an
search engine. The reason of this problem is included in non-effective work of filters,
and as the consequence, many documents non-related with user queries (e.g. advertis-
ing pages) may be by force pressed. Below we give an example.

• The second problem is based on giving to the user repeating URLs, i.e. URLs
which are identical or very similar to each other. This phenomenon is a burden for the
user because he must lose a lot of time and forward many screens for finding inter-
ested information.

There are two kinds of agents:

• Searching Agent (SA) and
• Managing Agent (MA).
The tasks of a searching agent consist of:
• selecting in its knowledge base the best search engine for given query,
• generating answer using chosen search engine,
• actualizing its knowledge base on the basis of the final result determined as the

consensus of results generated by all searching agents. As the result of the actualiza-
tion the used search engine obtains a weight referring to given query.

The tasks of a managing agent consist of:

• creating searching agents,
• determining consensus of answers generated by searching agents and checking

consistency degree of the set of these answers,
• calculating the distances between the consensus and answers generated by search-

ing agents and sending the results to these agents for actualizing their knowledge
bases.

The general scheme of activity of m agents SA and one MA and their cooperation
is presented in Figure 1.

The circles of work of agents SA and MA are described as follows:

Agent SA:

- Loading information about search engines;
- Receiving new query from agent MA;
- Loading the database about queries;
- Comparing new query with queries stored in the database;
- Choosing a search engine (if the database is empty then the choice is made in a

random way) and running it for generating the answer;
- Eliminating repeating URLs and ordering them;
- Sending the answer (in form of a ranking of URLs) to the MA agent;
- After receiving the evaluation from the MA agent (this evaluation is calculated

on the basis of the distance between its answer and the final answer determined
by MA agent), and next actualizing its knowledge base;

- Reporting its readiness for the next search.

 A Multiagent System Aiding Information Retrieval 401

Agent MA:

- Gathering answers from agents SA (in form of URLs’ rankings);
- Determining consensus C of the set of rankings;
- Calculating consistency level of the set of rankings;
- If the consistency level is low (the set of rankings is not consistent enough) then

MA agent must wait for the decision of the user. The user can require repeating
the search or indicate good answer among these given by SA agents;

- If the consistency level is high (the set of rankings is consistent) the MA agent
calculates the weights of agents SA (i.e. it calculates elements of matrix W, at
the beginning they are equal 1)

- These weights will be used by agent MA for calculating the next consensus.

In this system the following algorithms are used (their detail descriptions are given
in report [2]):

- Algorithm for eliminating repeating URLs ;
- Algorithm for transferring a binary matrix into a ranking;
- Three algorithms for calculating 3 kinds of distances between queries;
- Algorithm for calculating distances between rankings;
- Algorithm for calculating consensus for a set of rankings based on the method
branch and bound.
- Algorithm for calculating the consistency level of a set of rankings.

3 Description of the Program

To run the program it is needed to install server Aglets with environment JDK. The
components needed for the systems are: JDK 1.1.6, Swing 1.0.1, JBCL 2.0 and IBM
Aglets 1.1b3. For generating answer using a search engine each agent SA formulates
the query in URL form and sends it to Internet. As the result the agent receives a
HTML page which is next processed in order to generate proper markups HREF (by
means of class HTMLDocument). During the system work it is possible to spy on
actual state of agents MA and of agents SA and their histories. Each agent SA for the
first query in its life draws a search engine from the above given list. A MA agent
should take care of different search engines for different SA agents.

After each retrieval process and evaluation given by agent MA, a SA agent writes
the query to its knowledge base with the accuracy degree (that is the distance between
its answer and the consensus). For a next query an agent SA does not draw the search
engine but determines it in the following way: The agent compares the query to que-
ries stored in the base and chooses such query which is the nearest and has accuracy
degree greater than 50%. The chosen search engine will be this which has been used
for this query. Agents SA have 3 algorithms for comparing queries and they can draw
one of them. Owing to this their query bases are not similar to each other.

After all SA agents have finished their retrieval processes agent MA determines the
consistency level of answers generated by agents SA taking into account their
weights. At the beginning the weights are equal 1 for all SA agents. If the set of
answers is not consistent enough (the consistency level is too low) then agent MA
shows the user all answers. The user can choose the answer of a SA agent which in

402 N.T. Nguyen, A. Blazowski, and M. Malowiecki

his opinion is the best or require to renew the retrieval process. If the set of answers is
consistent (the consistency level is high) then agent MA determines the consensus and
calculates the weights for agents SA.

If a URL is repeated in many answers then it means that the relevance degree of
this URL is large. If a URL occurs many times in an answer then an agent SA must
eliminate the repetitions first. The way for eliminating of repeating URLs in the an-
swer of one agent is based on comparison of this URL to other URLs, if they are
similar in 80% than the system decides that they are identical. Owing to this the an-
swers of SA agents are more “clear” before the consensus choice.

If a URL occurs in few answers or occurs on lower positions of the answers then in
the consensus it should not occur at all, or if so, only on a lower position. The consen-
sus determining algorithm allows to omit non-relevant URLs or at least to place them
in the last positions of the final ranking. Concretely, assume that a URL (e.g. an ad-
vertising page) occurs at the first position of the answer generated by of an agent, but
it does not occur in the rankings of other agents. Then, in dependence on the number
of agents SA taking part in the retrieval this URL may not appear in the final ranking,
and even if so, it should be at a very low position. The larger is the number of SA
agents the lower is the position for this URL. So one can expect that the final ranking
should be more relevant than each generated by an agent SA.

4 Conclusions

Presented in this paper multiagent system can be useful in information retrieval in
Internet. The approach for using several search engines for the same query is not
novel, but the worked out method for reconciling the results has not been proposed by
other authors. The advantage of this method is that it does not need the information
about the user (his preferences, profiles etc.). It accepts such assumption that if sev-
eral experts (in this case search engines) solve the same problem, then in general the
reconciled solution should be more credible than those proposed by the experts.

References

1. Barthelemy, J.P., Janowitz M.F.: A Formal Theory of Consensus. SIAM J. Discrete Math. 4
(1991) 305-322

2. Bła owski, A, Nguyen, N.T.: AGWI - Multiagent System Aiding Information Retrieval in
Internet. Technical Reports of Dept. of Information Systems, Wroclaw Univ. of Tech., No.
32 (2002) (in Polish)

3. Day, W.H.E.: Consensus Methods as Tools for Data Analysis. In: Bock, H.H. (ed.): Classi-
fication and Related Methods for Data Analysis. North-Holland (1988) 312-324

4. Lange, D., Oshima, M.: Programming and Developing JavaTM Mobile Agents with Aglets,
Longman (1998)

5. Menczer, F.: Complementing Search Engines with Online Web Mining Agents. Decision
Support Systems 35 (2003) 195-212

6. Nguyen, N.T.: Consensus System for Solving Conflicts in Distributed Systems. Journal of
Information Sciences 147 (2002) 91-122

Interval-Valued Data Structures and
Their Application to e-Learning

Adam Niewiadomski

Technical University of Lodz, Institute of Computer Science,
ul.Wolczanska 215, 93-005, Lodz, Poland

aniewiadomski@ics.p.lodz.pl

Abstract. The paper is devoted to the problem of replacing crisp num-
bers with interval numbers in soft computations. The original concept
of an interval-valued vector (IVV) is introduced, and the new extensions
of classic similarity measures are proposed to handle IVV matching. Fi-
nally, the presented data structure and the matching methods are used
in the process of an automated evaluation of tests in e-learning (distance
learning within the Internet).

1 Introduction

Many of natural language (NL) and technical data are expressed with intervals
instead of crisp numbers. In contemporary NL people frequently construct the
sentences containing uncertainties of the interval e.g. I drink coffee 3–4 times a
day. Analogously, in technical and engineering data, intervals also appear fre-
quently, because of some tolerance in measuring real parameters, e.g. Device
powered with 220–230 V. There also exist logical systems and calculi using in-
tervals as truth values [2].

We see a great opportunity for applications of interval structures and opera-
tions in the process of automated evaluation of tests in e-learning; particularly,
the scope is to model expert non-crisp marks with intervals and then to compare
them to results obtained from intelligent marking algorithms whether the latter
complete human intuitions.

2 Interval-Valued Vectors

We denote the set of all closed intervals in R as Int(R). Int(R) is the subset of
Pow(R) — powerset (set of all subsets) of R. The closed interval [a, a] is called
degenerated iff a = a. Each degenerated interval [a = a, a = a] may be treated
as the real number a.

The structure called an interval-valued vector (IVV) is proposed: let k ∈
N . Vector V = [vi], i ≤ k built of k elements is an interval-valued vector in
(Int(R))k, iff each vi is an interval in Int(R), i.e. vi = [vi, vi] ∈ Int(R), vi ≤ vi,
for each i = 1, 2, ..., k. Thus, vector V is of the form: V = {[v1, v1], [v2, v2],...,

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 403–407, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

404 A. Niewiadomski

[vk, vk]}. This extension is based on replacing elements being crisp numbers
with elements being intervals in a vector. Each classic vector is a special case
of an interval-valued vector where its each element is a degenerated interval
[v, v], v = v ∈ R. See the following example: let k = 3, and the sample interval-
valued vector V in Int([0, 1])3 is of the form: V = {[0, 0.8], [0.2, 0.5], [0.9, 0.1]}.

3 Similarity Measures for IV Vectors

In this approach, we concentrate on reflexive and symmetrical fuzzy binary re-
lations (the so-called neighbourhood relations, [1]) as models for similarity con-
nections for interval-valued vectors. Three neighbourhood relations between nu-
merical vectors are recalled in [9]: a) correlation coefficient, b) min-max method,
and c) arithmetic average-minimum method. We propose the extended versions
of these methods due to the interval character of vectors being compared. Let
A = {a1, a2, ..., an}, V = {v1, v2, ..., vn} — interval-valued vectors in (Int(R))n.
The following reflexive and symmetrical IV similarity measures between A and
V are proposed

a) IV correlation coefficient — rcc = [rcc, rcc]

rcc(A, V) =
∑n

i=1 |ai − av(A)| · |vi − av(V)|√∑n
i=1(ai − av(A))2 ·

∑n
i=1(vi − av(V))2

(1)

rcc(A, V) =
∑n

i=1 |ai − av(A)| · |vi − av(V)|√∑n
i=1(ai − av(A))2 ·

∑n
i=1(vi − av(V))2

(2)

where av(A) = [av(A), av(A)] =
[1

n

∑n
i=1 ai,

1
n

∑n
i=1 ai

]
is the arithmetic aver-

age of the interval-valued vector A, and av(V) = [av(V), av(V)] — analogously;

b) IV minimum-maximum method — rmm = [rmm, rmm]

rmm(A, V) =
∑n

i=1 min{ai, vi}∑n
i=1 max{ai, vi}

(3)

and rmm(A, V) — analogously;

c) IV arithmetic average-minimum method — ram = [ram, ram]

ram(A, V) =
∑n

i=1 min{ai, vi}
1
2

∑n
i=1(ai + vi)

(4)

and ram(A, V) — analogously.
Notice that the values indicating the similarity levels between IVVs are also

intervals. Notice also that if all elements of compared vectors are degenerated
intervals, the results of the a)–c) methods are degenerated intervals, too; in that
case, formulae (1)–(4) are strictly relevant measures for classic vectors.

Interval-Valued Data Structures 405

4 IV Evaluation and IV Marking in e-Learning

Contemporarily, evaluating and marking in e-learning must be done manually
by a tutor, even if s/he works on modern Web platforms. Moreover, the pro-
cess of manual marking should be repeated by a teacher at least as many times
as the number of students at a course is. There exist the procedures of auto-
mated checking of choice tests, mostly based on Hamming distance, however, the
results of the more complicated tests, as open questions, writing sentences, pro-
gramming, image recognition, definitely lack of automated marking procedures.
The original propositions are given for two subjects only: programming [6] [7]
and German grammar [8]. The possible application of an intelligent marking
procedure on an e-learning platform is depicted in Fig.1.

Fig. 1. The part of e-testing process supported by AI algorithms

In this paper, due to its title, the presentation of marking algorithms is not
intended. Their thorough descriptions and the explanation of their connections
with human intuitions are given in [6]–[8]. The computational power of these
procedures in textual information searching and retrieving is described and ex-
emplified in [5][10].

4.1 Experiment Construction

The aim of the experiment is to determine the relevancy of six intelligent mark-
ing algorithms with expert opinions, see: [8]. The association is measured by
computing the similarity level between the vector of marks given by experts and
the vector of analogous marks computed by a one of the algorithms. The test
consists of 240 answers (correct, partially correct, and wrong) to ca 50 questions

406 A. Niewiadomski

at German grammar (ordering sets of mixed words to correct sentences; see [8]).
Each algorithm marks the answers with real numbers from [0, 1]. The marks
given by the algorithms 1–6 are stored as the elements of vectors A1, A2,..., A6,
respectively.

The scale of marking for the experts is more natural: {0, 0.25, 0.5, 0.75, 1.0}.
The marks collected from k experts are stored as the elements of vector E = {e1,

e2,..., e240}, where ei =
∑k

j=1
eij

k , and j is the number of the expert. The clou of
the method is that experts sometimes use intervals instead of crisp marks (i.e.
[0.5, 0.75]), so the data collected from them must be stored in an IV vector and
evaluated with a one of procedures given in Section 3.

4.2 Evaluation

The similarity levels rcc, rmm, and ram for the pairs of vectors (A1, E), (A2, E),...,
(A6, E) are computed with formulae (1)–(4). Notice that A1,..., A6 are degen-
erated IVVs, what simplifies the computations. The results of the comparisons
are collected in Tab. 1

Table 1. IV similarity levels of A1,..., A6 to IVV E

Algorithm rcc(An, E) rmm(An, E) ram(An, E)
A1 [0.87, 0.89] [0.72, 0.84] [0.83, 0.91]
A2 [0.81, 0.81] [0.69, 0.86] [0.82, 0.92]
A3 [0.85, 0.86] [0.70, 0.81] [0.82, 0.90]
A4 [0.86, 0.87] [0.67, 0.74] [0.80, 0.85]
A5 [0.87, 0.87] [0.72, 0.81] [0.83, 0.89]
A6 [0.81, 0.82] [0.68, 0.88] [0.81, 0.94]
E [1.0, 1.0] [1.0, 1.0] [1.0, 1.0]

4.3 Conclusions

Tab. 1 contains the IV similarity degrees of vectors A1, A2,..., A6 to the expert
marks E. As it is observed, Algorithms 1. and 5. provide the results which are the
most relevant to the human marks — it is indicated by the highest lower bounds
of similarity levels rcc, rmm, and ram for pairs (A1, E) and (A5, E). The addi-
tional conclusion is that Algorithm 5. provides the results slightly more precisely
than Algorithm 1., because of the smaller widths of the similarity coefficients for
the pair (A5, E), than for (A1, E). Values 1.0 in the last row indicate, that the
IVV E is identical with itself; it is implied by the reflexivity of neighbourhood
fuzzy relations.

It should be emphasised, that the standard processing of interval data (i.e.
reducing them to crisp numbers) would disable obtaining the interval-valued re-
sults, relevant to the intuitions of the experts, and, what is even more important,
to their natural way of expressing opinions. The application of IVVs does not
increase meaningfully the computational cost, and it provides better handling of
uncertainties in automated e-testing process.

Interval-Valued Data Structures 407

Currently, the authors are working on applications of type-2 fuzzy logic sys-
tems [3] in e-testing. There are strong premises that this newer approach enables
the effective modeling the NL uncertainties appearing in more complicated tests.

References

1. Cross V.V., Sudkamp T.A.: Similarity and Compatibility in Fuzzy Set Theory.
Physica-Verlag, c/o Springer-Verlag, 2002

2. Entemann C.W.: A fuzzy logic with interval truth values. Fuzzy Sets and Systems,
113 (2000) 162–183

3. Karnik N.N., Mendel J.M.: An Introduction to Type-2 Fuzzy Logic Systems. Uni-
versity of Southern California, Los Angeles, 1998

4. Moore R., Lodwick W.: Interval analysis and fuzzy set theory. Fuzzy Sets and
Systems 135 (2003) 5–9

5. Niewiadomski A., Szczepaniak P.S.: Fuzzy Similarity in E-Commerce Domains.
In: Segovia J., Szczepaniak P.S., Niedzwiedzinski M.: E-Commerce and Intelligent
Methods. Springer-Verlag, 2002

6. Niewiadomski A., Grzybowski R.: Fuzzy measures of text similarity in automated
evaluation of exams tests. Therotical and Applied Computer Science, 5 (2003)
193–200 (in Polish)

7. Niewiadomski A., Jedynak A., Grzybowski R.: Automated evaluation of e-tests.
Proceedings of 4th Ukrainian-Polish Conference Environmental Mechanics, Meth-
ods of Computer Science And Simulations, Lviv, Ukraine (June 24-26, 2004) 133–
140 (in Polish)

8. Niewiadomski A., Rybusinski B., Sakowski K., Grzybowski R.: The application
of multivalued similarity relations to automated evaluation of grammar tests. In:
Academy On-line — e-learning, methodics, technologies, management (to appear;
in Polish)

9. Ross T.J.: Fuzzy Logic with Engineering Applications. McGraw Hill Inc., 1995.
10. Szczepaniak P.S., Niewiadomski A.: Internet Searched Based on Text Intuitionistic

Fuzzy Similarity. In: Szczepaniak P.S., Segovia J., Kacprzyk J., Zadeh L.A. (Eds.):
Intelligent Exploration of the Web. Physica Verlag, c/o Springer-Verlag, 2003

Boolean Functions with a Low
Polynomial Degree and

Quantum Query Algorithms

Raitis Ozols1, Rūsiņš Freivalds1,�, Jevgeņijs Ivanovs1, El̄ına Kalniņa1,
Lelde Lāce1, Masahiro Miyakawa2, Hisayuki Tatsumi2, and Daina Taimiņa3

1 Institute of Mathematics and Computer Science, University of Latvia,
Raina bulv. 29, Riga, Latvia
Rusins.Freivalds@mii.lu.lv

2 Tsukuba College of Technology, 4-3-15 Amakubo,
Tsukuba, Ibaraki, 305-0005 Japan

mamiyaka@cs.k.tsukuba-tech.ac.jp
3 Department of Mathematics, Cornell University, 511 Malott Hall,

Ithaca, NY, 14853, U.S.A.
dtaimina@math.cornell.edu

Abstract. The complexity of quantum query algorithms computing
Boolean functions is strongly related to the degree of the algebraic poly-
nomial representing this Boolean function. There are two related diffi-
cult open problems. First, Boolean functions are sought for which the
complexity of exact quantum query algorithms is essentially less than
the complexity of deterministic query algorithms for the same function.
Second, Boolean functions are sought for which the degree of the repre-
senting polynomial is essentially less than the complexity of deterministic
query algorithms. We present in this paper new techniques to solve the
second problem.

1 Introduction

In the query model, the input x1, . . . , xN is contained in a black box and can
be accessed by queries to the black box. In each query, we give i to the black
box and the black box outputs xi. The goal is to solve the problem with the
minimum number of queries. The classical version of this model is known as
decision trees The quantum version of this model is described in [2].

Deutsch [3] constructed an unexpected quantum query algorithm comput-
ing the 2-argument Boolean function PARITY with 1 query only such that
this algorithm produces the correct result with probability 1. Such quantum
query algorithms are called exact quantum query algorithms. It is a well-known
open problem to construct exact quantum query algorithms with complexity

� Research supported by Grant No.01.0354 from the Latvian Council of Science and
by the European Commission, Contract IST-1999-11234 (QAIP).

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 408–412, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Boolean Functions with a Low Polynomial Degree 409

(number of queries) much smaller than the complexity of deterministic query
algorithms for the same Boolean function. Deutsch’s algorithm allows to save
half of queries needed for deterministic query algorithms to compute
PARITY.

Unfortunately, up to now this is the best proved advantage of exact quantum
vs. deterministic query algorithms. On the other hand, the complexity of an
exact quantum query algorithm QE(f) can never be less than 3

√
D(f) for the

same function f (Midrijānis [5], improving over Beals et al. [1]). However there is
a huge gap between D(f)/2 and 3

√
D(f). Many researchers have tried to bridge

the gap but with no success.
Every Boolean function can be expressed as an algebraic polynomial. For

instance, x1 ∨ x2 can be expressed as x1 + x2 − x1x2 , x1 ⊕ x2 can be expressed
as x1 + x2− 2x1x2, the function x1 ∨ x2 ∨ x3 can be expressed as x1 + x2 + x3−
x1x2−x1x3−x2x3−x1x2x3 . This representing polynomial is unique. The degree
of the representing polynomial is called the degree of the Boolean function and
it is denoted as deg(f).

Theorem 1. [1] For arbitrary Boolean function f , deg(f) ≤ D(f).

Theorem 2. [1] For arbitrary Boolean function f , 1
2deg(f) ≤ QE(f).

Hence to find a Boolean function for which the exact quantum query com-
plexity is essentially smaller than the deterministic query complexity, we are to
consider Boolean functions with small deg(f) and larger D(f). However even this
problem presents a big difficulty. We present in this paper new techniques to
solve this problem but the concrete results are still moderate. We have improved
the existing best upper bound but the open problem is still open.

2 Graphs and Functions

We write variables x1, x2, . . . x7 where xi ∈ {0, 1} (Figure 1) in a circle and
consider them as graph vertices. Let us compare variables x1 and x2. If x1 = x2
then we connect them with a continuous line . If x1 �= x2 then we connect them
with dashed line. After that we compare x2 and x3 and again connect them with
the appropriate line. We continue until we get variables x7 and x1 which we
again connect. This is the way how we get closed cyclic graph with ”coloured”
edges (Figure 2). Edges which are drawn with dashed lines let us call differences.
Now we show that number of differences will always be an even number. Sum of

(x1 − x2)2 + (x2 − x3)2 + . . . + (x6 − x7)2 + (x7 − x1)2

is always an even number 0, 2, 4 or 6. Hence the number of differences can only
be 0, 2, 4 or 6.

Moreover, it is easy to understand that the number of differences in the graph
can be expressed by a function

ϕ = (x1 − x2)2 + (x2 − x3)2 + . . . + (x6 − x7)2 + (x7 − x1)2.

410 R. Ozols et al.

Hence for all x1, x2, . . . , x7 ∈ {0, 1}, ϕ ∈ {0, 2, 4, 6}. From here ϕ − 3 ∈
{−3,−1, 1, 3} and (ϕ − 3)2 ∈ {9, 1, 1, 9}. (ϕ − 3)2 − 1 ∈ {8, 0, 0, 8} and f0 =
((ϕ− 3)2 − 1)/8 ∈ {1, 0, 0, 1}. Thus, the derived function f0 = f0(x1, x2, . . . x7)
is a Boolean function, because all of its variables xi ∈ {0, 1}, f0 ∈ {0, 1}. We
have deg(f0) = deg(((ϕ− 3)2 − 1)/8) = 4. Obviously,

f0 =
{

0 if d=2 or d=4
1 if d=0 or d=6 , (d is the number of differences).

Considering the case x1 = x2 = . . . = x7 we see that D(f0) = 7.
The technique described above can be generalized:

1. We take any Boolean function h(x, y) with two variables which has no fictive
variables (for example, in case of function f0 we consider function h(x, y) =
(x− y)2 = x + y − 2xy.
2. We consider a graph G with n vertices. For each vertice we assign a variable
xi. After then for each graph edge (xi, xj) we calculate h(xi, xj) and the sum
for all edges. Then we get a function ϕ(x1, x2, . . . , xn):

ϕ(x1, x2, . . . , xn) =
1≤i<j≤n∑
xi,xj∈G

h(xi, xj)

where (xi, xj) ∈ G means that the graph G contains an edge (xi, xj).
3.We find out what values can the function ϕ take. Then we define that for all
xi, ϕ(x1, x2, . . . , xn) ∈ A, where A = {a1, a2, . . . , ak}, ai ∈ N ∪ {0}.
4. We construct a polynomial P = P (y) such that for ∀y ∈ A, P (y) ∈ {0, 1}. We
try to minimalize the degree of the polynomial.
5. We consider the function f(x1, x2, . . . , xn) = P (ϕ(x1, x2, . . . , xn)). This func-
tion is a Boolean function with deg(f) ≤ deg(P)deg(ϕ) = 2deg(P) ≤ 2(|A|−1) =
2(k− 1). If we manage to prove that D(f) is sufficiently large or even D(f) = n
and k is small, then the function f is suitable for our purpose.

Now we wish to generalize the idea described above. We started from a par-
ticular graph. We used an algebraic polynomial (of low degree). However this
polynomial brought us not Boolean values {0, 1} but values from a larger alpha-
bet. In the example described above the polynomial was a second degree poly-
nomial ϕ = (x1

2−2x1x2 +x2
2)+(x2

2−2x2x3 +x3
2)+ . . .+(x7

2−2x7x1 +x1
2)

and the values were {0, 2, 4, 6}. Then we used another polynomial 1
8 ((d−3)2−1)

which transformed this set {0, 2, 4, 6} into Boolean values {0, 1}. Again we were
interested to have this polynomial of as low degree as possible.

Boolean Functions with a Low Polynomial Degree 411

Unfortunately, the graphs with more than 7 vertices do not possess an alge-
braic polynomial like our ϕ giving us no more than 4 possible values. However
we can generalize this idea and start not with a graph but with an algebraic
polynomial from variables x1, x2, . . . , xN .

Using this generalized idea, we now consider a polynomial ϕ = (x1 + x2 −
x1x2 − x1x3 − x2x4 + x3x4) + (x5 + x6 − x5x6 − x5x7 − x6x8 + x7x8) + (x9 +
x10 − x9x10 − x9x11 − x10x12 + x11x12) It is easy to check that this polynomial
is a second degree polynomial taking values {0, 1, 2, 3}. Using the polynomial
1
8 ((2d− 3)2 − 1), we obtain Boolean values {0, 1} as the values of the combined
polynomial 1

8 ((2(x1 +x2−x1x2−x1x3−x2x4 +x3x4)+(x5 +x6−x5x6−x5x7−
x6x8 + x7x8) + (x9 + x10 − x9x10 − x9x11 − x10x12 + x11x12) − 3)2 − 1) of the
degree 4. This polynomial represents a Boolean function f of 12 variables. We
will immediately prove that the deterministic query complexity of this Boolean
function is 9.

Theorem 3. For fn we have D(fn) = 9n and deg(fn) = 4n.

Our main idea can be still generalized. We can use more values in the algebraic
polynomial ϕ, provided we use a corresponding polynomial substituting 1

8 ((d−
3)2−1). There is a big temptation to start searching for low degree polynomials to
transform many values into two Boolean values. However in all our polynomials
ϕ we had the finite set values organized in an arithmetic progression. This is a
serious restriction. Either we are to overcome this restriction or we are to use
higher degree polynomials for the transformation.

We have found some rather low degree polynomials for such transformation.
However they are somewhat exceptional polynomials obtained by exhaustive
search.

Polynomial of Degree 4:

1
24

x4 − 5
24

x3 +
35
24

x2 − 25
12

x + 1

p(0)=1, p(1)=0, p(2)=0, p(3)=0, p(4)=0, p(5)=1

Polynomial of Degree 6:

1
720

x6 − 7
240

x5 +
35
144

x4 − 49
48

x3 +
203
90

x2 − 49
20

x + 1

p(0)=1, p(1)=0, p(2)=0, p(3)=0, p(4)=0, p(5)=0, p(6)=0, p(7)=1

Polynomial of Degree 8:

1
40320

x8 − 1
1120

x7 +
13
960

x6 − 9
80

x5 +
1069
1920

x4 − 267
160

x3 +
29531
10080

x2 − 761
280

x + 1

p(0)=1,p(1)=0,p(2)=0,p(3)=0,p(4)=0,p(5)=0,p(6)=0,p(7)=0,p(8)=0,p(9)=1

412 R. Ozols et al.

References

1. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, Ronald de Wolf:
Quantum Lower Bounds by Polynomials. FOCS 1998: 352-361.

2. H. Buhrman and R. de Wolf. Complexity Measures and Decision Tree Complexity :
A Survey. Theoretical Computer Science, v. 288(1): 21-43 (2002)

3. David Deutsch. Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society, London, A400:97-117, (1985).

4. J. Gruska. Quantum Computing. McGraw-Hill, 1999.
5. Gatis Midrijānis. Exact quantum query complexity for total Boolean functions.

http://arxiv.org/abs/quant-ph/0403168
6. M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. Cam-

bridge University Press, 2000

Representation of Extended RBAC Model
Using UML Language

Aneta Poniszewska-Maranda1, Gilles Goncalves2, and Fred Hemery3

1 Institute of Computer Science, Technical University of Lodz, Poland
anetap@ics.p.lodz.pl

2 LGI2A - Universite d’Artois, Technoparc-Futura, Bethune, France
3 IUT Bethune, Universite d’Artois, Bethune, France

Abstract. This paper presents an extension of the standard role-based
access control (RBAC) model together with its representation using the
Unified Modeling Language (UML). The presented model is developed
for the role engineering in the security of information system.

The presented implementation of the RBAC model consists in role
creation via defining appropriate permissions. The entire procedure is
performed in two stages: defining the permissions assigned to a function
and providing the definitions of functions assigned to a particular role.

1 Introduction

The role-based access control (RBAC) model was chosen to present and realize
the access control in security processes of an information system. It allows the
administrator to assign users to roles rather then users directly to permissions.
The most important concept of RBAC is a role. It facilitates the access control
management performed by the security administrator since users and permis-
sions can be assigned to role. Each user has a utilization profile that defines his
roles in the enterprise. The role is the set of permissions that allow execution of
system functions and the access to the data used by these functions [1, 2].

The Unified Modeling Language (UML) [3] has been chosen for the represen-
tation of extended RBAC model because nowadays it is a standard tool, properly
reflecting the description of the information system and its needs. In the recent
years the UML has become a standard also for the object-oriented modeling in
the field of the software engineering.

The first part of the paper describes our extension of the standard RBAC
model, the second part the representation of the RBAC model concepts using
UML, and the third part deals with the implementation of the RBAC model.

2 Extended RBAC Model

The RBAC model regulates the access of users to information basing on activities
that users perform in a system [1, 2]. It requires identification of roles in this

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 413–417, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

414 A. Poniszewska-Maranda, G. Goncalves, and F. Hemery

system. In course of study of this issue, the standard model was extended by
addition of new elements [4] (Figure 1).

Session

Permissions*
*

*
*

Operation

Roles

*

1

*

1

*

1

*

1

Users Functions

Method Object

Class

* * * *

1

*
1..*

1..*

*
*

Fig. 1. Extension of the RBAC model

Each role defined in the RBAC model realizes a specific task in the enterprise
process. A role contains many functions that the user can take. For each role it
is possible to choose the system functions which are necessary for it. Thus a role
can be presented as a set of functions that this role can take and realize. Each
function can have one or more permissions, and consequently a function can be
defined as a set of permissions. If an access to an object is required, then the
necessary permissions can be assigned to the function to complete the desired
job. All permissions can give the possibility to perform the role responsibilities.

In order to access data stored in an object a message has to be sent to this
object. This message causes execution of a particular method on this object.
Permission can be viewed as a possibility of execution a given method on an
object in order to access data stored in this object. The same permission is
defined for all instances of the object except the constraint specification.

3 Representation of the Extended RBAC Model
Using the UML Concepts

UML [3] contains a suite of diagrams for requirements, analysis design and imple-
mentation of the development of systems. Out of nine types of diagrams defined
by UML and representing different viewpoints of the modeling, two types, use
case diagram and sequence diagram, are in the focus of attention of this study.

The use case diagram represents the functions of the system from the users’
point of view. According to the definition of the UML meta-model, each use case
diagram contains some use cases and each use case represents a collaboration,
i.e. a scenario. To determine each collaboration an interaction diagram can be
created. The interaction diagram represents the objects and messages exchanged
in the use case. Two types of interaction diagrams, sequence diagram and collab-
oration diagram, are defined to capture how objects collaborate with each other
to realize the use cases. The purpose of the presented study is to implement
and realize the extended RBAC model with the use of UML. To this aim, the
conceptions of the UML and RBAC model (Figure 2) should be first joined.

Representation of Extended RBAC Model Using UML Language 415

1

*

1

*

1

*

1
*

1

*

Use Case

Objects Operations

Sequence Diagram or
Collaboration Diagram

Objects
Operations

Function

Role

Permissions

Use Case
Diagram

UML

Actor

RBAC

Fig. 2. UML concepts and their relationships with the RBAC model

Role-Actor. The UML supports the conception of the use case, on which the
developed system is based. This approach is realized via use case diagram from
which the concept of an actor very close to that of the role concept in the RBAC
model is derived. In UML the actor defined as a role or a set of roles played by a
person or by a group of people interacting with a system, represents a category
of users that share the same functions or the same activities in an organization.

Function - Use Case. Each actor co-operates with one or more use cases
representing the essential functions in a system. Use cases can be assigned to
the functions and for each role the functions realized by this role to co-operate
with the system can be chosen. This process is similar to that of connecting
actors with their use cases. Thus, in the application realized with the use of the
UML, a function can be replaced by a use case.

Methods and Objects. The methods of RBAC model are represented in UML
by the methods executed in different types of diagrams, e.g. in a sequence dia-
gram, while for the objects of RBAC model the UML object concept is used.

Permissions - Sequence Diagram. A use case contains a sequence of actions
executed by an actor in a system. Although for the purpose of this study se-
quence diagrams have been chosen to present the use cases, the same results
could be obtained with the use of collaboration diagrams. A sequence diagram
represents an interaction of objects by means of a sequence of messages sent
between these objects. In each sequence diagram there is one or more objects
representing actors who in this way participle directly in the process of sending
messages between the objects. This process is realized by the execution of meth-
ods on objects. A message sent to an object is a method. Access to the object
is controlled with respect to the right of the method execution possessed by a
subject over an object. Thus, for each use case it is necessary to specify permis-
sions for the method execution. These permissions are assigned to the functions
by the function-permission (F-P) relation.

416 A. Poniszewska-Maranda, G. Goncalves, and F. Hemery

Constraints. The concept of constraints of the RBAC model is connected di-
rectly with that of the constraint conception existing in the UML language.

Relations. The relations that occur between the elements of the RBAC model
can be found in the use case diagrams and interaction diagrams. A use case dia-
gram exploits four types of relations: communication relation between an actor
and a use case (being a relation between a role and a function, R-F relation),
generalization relation between actors (representing a heritage relation between
roles, R-R relation), two types of relations: extension relation and utilization
relation, both of them occurring between use cases (represent relations between
functions in the RBAC model, F-F relation). The relations between functions
and permissions (F-P relations) can be specified by means of connections be-
tween the use cases and the interaction diagrams that describe them.

4 Implementation of RBAC Model - Creation of Roles

The UML meta-model is applied to define the roles of RBAC models, the func-
tions that are used by these roles to co-operate with the information system
and the permissions needed to realize these functions. Owing to use case dia-
grams a list of actors co-operating with the information system and a list of
use cases of this system are obtained. An analysis of these diagrams allows au-
tomatic specification of relations of the following types: R-R relation (with the
use of generalization relation between the actors), R-F relation (association re-
lation between the actors and the use cases) and F-F relation (generalization
relation between the use cases). The description of a use case using the inter-
action diagrams presents activities needed to realize the functions of a system.
Each activity is a definition of execution of a method on an object. Therefore
the F-P relations can also be automatically managed.

Our definition of a set of roles in an information system with the use of UML
diagrams contains two stages: assignment of a set of privileges (permissions) to
the use case in order to define the function and assignment of a set of use cases
(functions) in order to define the role.

5 Conclusions

The paper proposes a representation of the extension of the classic RBAC model
using the UML language. It shows the relationships between the extended RBAC
concepts and those of the UML language. The elaborated RBAC extension gives
the possibility to manage the system and to make the process of the role creation
simpler, particularly in the conception phase. The implementation of the RBAC
model is also based on the UML. The creation of the user profile, performed in
two stages is realized using the UML concepts.

Representation of Extended RBAC Model Using UML Language 417

References

1. Sandhu R.S., Coyne E.J., Feinstein H.L, Youman C.B.: Role-Based Access Control
Models. IEEE Computer, 1996

2. Ferraiolo D., Sandhu R.S., Gavrila S., Kuhn D.R., Chandramouli R.: Proposed NIST
Role-Based Access control. ACM TISSEC, Volume 4, Number 3, 2001

3. OMG Unified Modeling Language Specification. OMG, Reference Manual, 2003
4. Goncalves G., Hemery F., Poniszewska A.: Verification of Access Control Coherence

in Information System during Modifications. 12th IEEE WETICE, Austria, 2003

A Methodology for Writing Class Contracts

Nele Smeets� and Eric Steegmans

Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{Nele.Smeets, Eric.Steegmans}@cs.kuleuven.ac.be

Abstract. One of the principles of Design by Contract is that contracts
for software components must be written in a declarative way, using a
formal, mathematically founded notation. When we apply the Design by
Contract methodology in a naive and straightforward way, we risk ending
up with unwanted duplication. In this paper, we describe a methodology
for writing class contracts that avoids specification duplication and that
gives rise to uniform class specifications with a clear and fixed structure.

1 Introduction

Design by Contract (DBC) [12] states that contracts for software components
must be written in a declarative way, using a formal, mathematically founded
notation. When we apply the DBC methodology in a naive and straightforward
way, we risk ending up with unwanted duplication.

For example, consider the following Java code, describing a class of bounded
lists. To save space, only a formal specification is given. When specification and
implementation are similar, the implementation is left out too.

� Research Assistant of the Fund for Scientific Research - Flanders (Belgium).

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 418–422, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Methodology for Writing Class Contracts 419

Despite its simplicity, the class of bounded lists already gives an example of
unwanted specification duplication. Indeed, part of the class invariant is repeated
in the precondition of the setCapacity method to ensure that, after application
of the method, the bounded list still satisfies its class invariant.

Duplicating constraints imposed on the characteristics of objects has a nega-
tive impact on software quality. Duplication of constraints hampers adaptability.
Moreover, we risk ending up with an inconsistent class definition. Further, cor-
rectness is at stake, because there is a considerable risk of being incomplete, when
writing the preconditions of a method. When we take inheritance into account,
things get even more complicated. When the class invariant is strengthened in
a subclass, the precondition of the setCapacity method must be strengthened
accordingly. Since the Liskov substitution principle [11] expresses that precon-
ditions can only be weakened, we are forced to use abstract preconditions [12].
Abstract preconditions will play an important role in our methodology.

Summarizing, a naive and straightforward application of the principles un-
derlying DBC violates a basic principle of good software engineering: each fact
must be worked out in one, and only one, place [14].

In this paper, we describe a methodology for writing class contracts. Our
methodology avoids specification duplication and gives rise to uniform class spec-
ifications with a clear and fixed structure. We describe our methodology using
the Java programming language, but it is also applicable to other object-oriented
languages.

2 Basic Queries

In our methodology, a first important step in writing class contracts is choosing
a set of basic queries. This way of working is also advocated in [13] and [15].
Basic queries are a minimal set of queries chosen in such a way that the entire
state of an object can be inspected using basic queries only. In our example,
there are two basic queries, indicated by the @basic-tag. Class contracts can be
specified thoroughly in terms of the chosen basic queries. We also avoid the risk
of writing circular assertions.

To describe the conditions imposed on the characteristics of the objects of a
class, we introduce two new concepts: partial conditions (Sect. 3) and complete
conditions (Sect. 4). Both are represented by Boolean queries. The concepts will
be presented for a class X containing two basic queries getv1() and getv2() with
return types V1 and V2.

3 Partial Conditions

A partial condition on a set of characteristics is a constraint involving all these
characteristics. For example, the partial condition on the capacity of a bounded
list expresses that the capacity should be positive. The partial condition on the
capacity and the list elements expresses that the number of elements should
not exceed the capacity of the list. The developer of a class is responsible for

420 N. Smeets and E. Steegmans

providing the partial conditions of the class. For each non-empty subset of char-
acteristics, a partial condition must be introduced. A partial condition can be
deterministic or non-deterministic.

In our methodology, the following Boolean queries are introduced to encap-
sulate the partial conditions on the characteristics of class X.

In general, evaluating partialConditionv1v2(v1, v2) is only meaningful
when partialConditionv1(v1) and partialConditionv2(v2) evaluate to true.
This explains the two preconditions of the partialConditionv1v2 method.

4 Complete Conditions

A complete condition on a set of characteristics is the conjunction of all partial
conditions concerning at least one of those characteristics. Thus, a complete con-
dition specifies all conditions that must be satisfied by a set of characteristics. In
our example, the complete condition on the capacity expresses that the capacity
must be positive and that the current number of list elements must be smaller
than or equal to the capacity.

Since all complete conditions have similar semantics, the complete conditions
on proper subsets of characteristics are defined in terms of the complete condition
on all characteristics. The complete condition on all characteristics is given by
the following Boolean query. The query is made non-deterministic to support
overriding in subclasses (see below).

The complete conditions on proper subsets of characteristics are defined in
terms of the complete condition on all characteristics completeConditionv1v2.

A Methodology for Writing Class Contracts 421

When a new characteristic is introduced in a subclass of X, represented by
the basic query getv3, the three complete conditions shown above are redefined
in terms of the complete condition completeConditionv1v2v3. It can be shown
that these redefinitions satisfy the Liskov substitution principle [11].

5 Advantages and Disadvantages

In this section, we examine the influence of our methodology on the quality
factors described in [12].

Our methodology has a positive impact on correctness, since it avoids dupli-
cation and helps in writing complete specifications.

It also has a good influence on extendibility. When a condition on a certain
characteristic or set of characteristics changes, only local changes are required.
The reason is that this knowledge is not spread around over the whole class, but
is concentrated in one single Boolean query, namely the corresponding partial
condition.

Using our methodology gives rise to well-documented classes with a trans-
parent structure. In this way, it has a positive influence on reusability.

When writing a class containing n characteristics, 2n − 1 partial and com-
plete conditions are needed. This exponential number of methods considerably
increases the size of a class, thereby requiring more memory, so efficiency is
negatively influenced.

Using our methodology, we abstract away from the code level, as prescribed
by MDA (Model Driven Architecture) [5]. From the partial conditions, a proper
tool can generate the complete conditions, the basic queries, the set methods
and the class invariant. Since the basic structure of the class is generated, the
developer can pay more attention to the other parts of the class, which has a
positive influence on productivity and on the general quality of the code.

6 Related Work

The ideas underlying DBC go back to the work of pioneers in computer science
such as Dijkstra [2] and Hoare [6]. DBC, as we know it today, was developed by
Bertrand Meyer as a part of Eiffel [12]. Most object-oriented languages, including
Java, C++ and C#, lack support for DBC. Nevertheless, there is a growing
interest in DBC and several tools have been developed that provide support for
DBC in Java ([1], [3], [4], [7], [8], [9]). The Java Modeling Language [10] and the
Object Constraint Language [16] are examples of formal specification languages.

7 Conclusion

In this paper, we described a methodology for writing class contracts. Our
methodology avoids specification duplication and gives rise to uniform class
specifications with a clear and fixed structure. Using our methodology, the ba-

422 N. Smeets and E. Steegmans

sic structure of a class can be generated automatically by a tool, allowing the
developer to pay more attention to the other parts of the class.

References

1. Della Torre Cicalese, C., Rotenstreich, S.: Behavioral Specification of Distributed
Software Component Interfaces. IEEE Computer, Vol. 32, No. 7 (1999) 46–53

2. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, ISBN 013215871X
(1976)

3. Duncan, A., Hölzle, U.: Adding Contracts to Java with Handshake. http://www.
cs.ucsb.edu/labs/oocsb/papers/TRCS98-32.pdf

4. Findler, R.B., Felleisen, M.: Contract Soundness for Object-Oriented Languages.
http://www.ccs.neu.edu/scheme/pubs/oopsla01-ff.pdf

5. Frankel, D.S.: Model Driven Architecture. Applying MDA to Enterprise Comput-
ing. Wiley Publishing, ISBN 0-471-31920-1 (2003)

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM, Vol. 12, No. 10 (1969) 576–583

7. The Jass Page. Home Page. http://semantik.informatik.uni-oldenburg.de/
~jass/

8. Karaorman, M., Hölzle, U., Bruno, J.: jContractor: A Reflective Java Library
to Support Design By Contract. http://www.cs.ucsb.edu/labs/oocsb/papers/
TRCS98-31.pdf

9. Kramer, R.: iContract – The Java Design by Contract Tool. TOOLS 26: Technology
of Object-Oriented Languages and Systems, Los Alamitos, California (1998) 295–
307

10. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary Design of JML: A Behavioral
Interface Specification Language for Java. Department of Computer Science, Iowa
State University, TR #98-06x (2004) ftp://ftp.cs.iastate.edu/pub/leavens/
JML/prelimdesign.pdf

11. Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, Vol. 16, No. 6 (1994) 1811–1841

12. Meyer, B.: Object-Oriented Software Construction, Second Edition. Prentice-Hall
Inc, ISBN 0-13-629155-4 (1997)

13. Mitchell, R., McKim, J.: Design by Contract, by Example. Addison-Wesley, ISBN
0-201-63460-0 (2002)

14. Parnas, D.L.: On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM, Vol. 15, No. 12 (1972) 1053–1058.

15. Steegmans, E., Dockx, J.: Objectgericht programmeren met Java. Acco, ISBN 90-
334-4535-2 (2002)

16. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language, Precise Modeling
with UML. Addison-Wesley, ISBN 0-201-37940-6 (1999)

Volumes of 3D Drawings of Homogenous
Product Graphs

(Extended Abstract)

Lubomir Torok�

Institute of Mathematics and Computer Science,
Slovak Academy of Sciences,

Severna 5, 974 01 Banska Bystrica, Slovak Republic
torok@savbb.sk

Abstract. 3-dimensional layout of graphs is a standard model for or-
thogonal graph drawing. Vertices are mapped into the 3D grid and edges
are drawn as the grid edge disjoint paths. The main measure of the effi-
ciency of the drawing is the volume which is motivated by the 3D VLSI
design. In this paper we develop a general framework for efficient 3D
drawing of product graphs in both 1 active layer and general model.
As a consequence we obtain several optimal drawings of product graphs
when the factor graphs represent typical networks like CCC, Butterfly,
star graph, De Bruijn... This is an analogue of a similar work done by
Fernandez and Efe [2] for 2D drawings using a different approach. On the
other hand our results are generalizations of the optimal 3D drawings of
hypercubes [9].

1 Preliminaries

Two models of 3D drawings are considered. One-active-layer (1-AL) model is a
natural generalization of 2D layout, when vertices are placed in the basic plane and
edges are routed in the volume above the basic plane in edge-disjoint manner. In
general model there are no restrictions on vertices placement and edges are routed
in edge-disjoint manner. The main measure of drawing effectivity is its volume.

The cartesian product is well-known operation defined on graphs. When ap-
plied, the cartesian product combines a set of ”factor” graphs into a ”product”
graph. Several well-known networks are instances of product networks, including
the grid, the hypercube and the torus. In this paper, we consider only homoge-
nous products, i.e. the factor graphs are isomorphic.

The following theorem provides the general lower bounds for volumes of graph
G in both models [9].

Theorem 1. The optimal volume of 3-dimensional 1-active layer layout of any
graph G with cutwidth cw(G) satisfies

� This research was supported by VEGA grants No. 2/3164/23 and No. 2/2060/23.

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 423–426, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

424 L. Torok

V OL1−AL(G) ≥ cw(G)
√

Σv∈V deg2(v).

The optimal volume of 3-dimensional layout of any graph G with cutwidth
cw(G) satisfies

V OL(G) ≥
(
cw(G)−

√
2cw(G)

) 3
2

.

Definition 1. [4] Let the routing ρ be defined as follows. For every two distinct
vertices u, v of G there exist 2 paths, from u to v and from v to u. The number
of paths of ρ is then n(n − 1). The edge forwarding index of (G, ρ) denoted by
π(G, ρ) is the maximum number of paths, specified by routing ρ going through
any edge of G. More precisely :

π(G, ρ) = max{πe(G, ρ) : e ∈ E(G)}

and the edge-forwarding index of G is defined as

π(G) = min{π(G, ρ) : ∀ρ}.

The following lemma [2] provides the lower bound for the bisection width of
product graph Gr. Since the bisection width is a lower bound for cutwidth, this
lemma is useful for the approximation of the cutwidth of a product graph Gr.

Lemma 1. If the edge forwarding index of factor graph G with n vertices is
π(G) then the bisection width of the product graph Gr satisfies

bw(Gr) ≥ n2r − 1
2π(G)nr−1 .

2 Layout Volumes of Cartesian Product Graphs

In this section we consider the volumes of cartesian product graphs in 1-AL layer
and general model. We provide the lower bounds and the constructions of the
upper bounds for the layout volumes in both models.

The following lemma offers the relation between the cutwidths of cartesian
product graphs and their factors.

Lemma 2. Let Gr be the homogenous product graph with factor graph G, and
let n be the number of vertices of G. Then

cw(Gr) ≤ nr − 1
n− 1

cw(G) = O
(
nr−1cw(G)

)
.

2.1 One-Active-Layer Model

Theorem 2. Let Gr be the homogenous product graph with factor graph G and
let r be divisible by 2. Then for the volume of the layout in 1-AL model we have
the following bounds.

Volumes of 3D Drawings of Homogenous Product Graphs 425

V1−AL(Gr) = Ω
(
n

r
2 rΔ(G)cw(Gr)

)
V1−AL(Gr) = O

(
nrrΔ(G)cw(G

r
2)

)
Proof. For the upper bound we generalize the construction of 1-AL layout from
[9]. The lower bound comes from Theorem 1.

Observation 1. The construction of 1-AL layout from proof of Theorem 2 is
asymptotically optimal if for the cutwidth of the product graph holds

cw(Gr) = Θ
(
nr−1cw(G)

)
.

2.2 General Model

Theorem 3. Let Gr be the homogenous product graph with factor graph G and
let r be divisible by 3. Then we have the following bounds for the volume of the
layout in general model of graph G.

V OL(Gr) = Ω
(
cw

3
2 (Gr)

)

V OL(Gr) = O

(
nr(Δ(G) +

√
cw(G

r
3))3

)
Proof. For the upper bound we generalize the construction from [9]. The lower
bound comes from Theorem 1.

Observation 2. The construction of the layout in general model from the proof
of Theorem 3 is asymptotically optimal if

cw(Gr) = Θ
(
nr−1cw(G)

)
and Δ2(Gr) << cw(G

r
2).

2.3 Layout Volumes of Some Known Product Graphs

Table 1 contains the parameters of the factor graphs used in the framework to
obtain the volumes in both models. The overview of the results for both models
is in Table 2.

Table 1. Input parameters of considered factor graphs

Factor graph n Δ(G) cw(G) π(G)

deBruijn 2m 4 Θ(2m+1

m
) [6] Θ(m2m−1)[7]

Star graph m! m − 1 Θ(m!)[1] Θ(m!) [3]
Complete transposition graph m! m − 1 Θ(mm!) [8] Θ((m − 1)!) [3]

Butterfly graph m2m 4 Θ(2m) Θ(m22m−1) [7]
Complete graph m m − 1 m2

4 [1] 2
CCC graph m2m m Θ(2m) Θ(m22m) [7]
Linear array m 2 1 Θ(m2)[4]

426 L. Torok

Table 2. Optimal layout volumes of several product graphs

Product graph 1-AL model General model

Complete transposition graph product Θ
(
(m!)

3r
2 rm(m − 1)

)
Θ

(
(m(m!)r)

3
2

)

deBruijn product Θ

(
r n

3r
2

log n

)
Θ

(
n

3
2 (r+1)

log
3
2 n

)

Star graph product Θ
(
(m!)

3r
2 r(m − 1)

)
Θ

(
(m!)

3r
2

)
Butterfly product Θ(m

3r
2 −12

3mr
2 r) Θ(m

3r
2 − 3

2 2
3mr

2)

Product of complete graphs Θ
(
m

3r
2 +1r(m − 1)

)
Θ

(
m

3r
2 + 3

2

)
CCC graph product Θ

(
m

3r
2 r2

3mr
2

)
Θ

(
m

3r
2 − 3

2 2
3mr

2

)
Linear array product Θ

(
m

3r
2 −1r

)
Θ

(
m

3r
2 − 3

2

)
Hypercube Θ

(
2

3m
2 m

)
[9] Θ

(
2

3m
2

)
[9]

Acknowledgment

I would like to thank to my PhD. supervisor Imrich Vrt’o for his valuable help
and ideas during my work on this paper.

References

1. Chi-Hsiang Yeh, Behrooz Parhami, VLSI layouts of complete graphs and star
graphs, IPL, 68 (1998) 39-45.

2. Fernandez, A., Efe, K., Efficient VLSI layouts for homogenous product networks
IEEE Transactions on Computers, 46 (1997) 1070-1082.

3. Ginette, G., Edge Forwarding Index of Cayley Graphs and Star Graphs, Discrete
Applied Mathematics, 80 (1997) 149-160.

4. Heydeman, M.C., Meyer, J.C., Sotteau, D., On forwarding indices of networks,
Discrete Applied Mahtematics, 23 (1989) 103-123

5. Leighton, F.T., Rosenberg, A.L., Three-dimensional circuit layouts, SIAM Journal
on Computing, 15 (1986) 793-813.

6. Raspaud, A., Sýkora, O., Vrt’o, I., Cutwidth of the de Bruijn graph, RAIRO, 26
(1995) 509-514.

7. Shahrokhi, F., Szekely, L.A.: An algebraic approach to the uniform concurrent mul-
ticommodity flow problem: Theory and applications, Technical report CRPDC-91-4,
DCS, Uni. North texas, Denton, 1991.

8. Stacho, L., Vrt’o, I. Bisection width of transposition graphs, Discrete Applied Math-
ematics, 84 (1998) 221-235.

9. Torok, L., Vrt’o, I. Layout volumes of the hypercube, in: Proc. 12th Intl. Symposium
on Graph Drawing, Lecture Notes in Computer Science, Springer, 2004 (to appear).

Author Index

Adamus, Rados�law 360
Al-Mutairi, Turki Ghazi 330
Alp, Ali 127

Bazgan, C. 62
Bieliková, Mária 167
Blazowski, Adam 399
Bobkowska, Anna 72
Bodlaender, Hans L. 1

Cecchet, Emmanuel 17
Chalopin, Jérémie 82
Chen, Jiu Jun 92
Chimani, Markus 96

de J. Sanchez, Adilson 394
de Melo, Ana C.V. 394
Didimo, Walter 106, 117
Di Giacomo, Emilio 106
Dillon, Tharam S. 310

Erciyeş, Kayhan 127
Erradi, Abdelkarim 310

Favre, Liliana 364
Feng, Jun 368
Fernau, Henning 137
Fich, Faith Ellen 28
Filkorn, Roman 372
Forlizzi, Luca 147
Fouchal, Hacène 157
Freivalds, Rūsiņš 408
Frivolt, György 167
Fulek, Radoslav 376

Gao, Ji 92
Gardner, William 310
Ghodsi, Mohammad 269
Goncalves, Gilles 413
Grilli, Luca 106

Habela, Piotr 188
He, Hongmei 376
Healy, Patrick 199
Hemery, Fred 413
Hromkovič, Juraj 147

Hu, Jun 92
Hüttel, Hans 178
Hyyrö, Heikki 380

Ivanovs, Jevgeņijs 408

Jayanti, Prasad 209
Jin, Zhi 340
Jirina, Marcel 385
Jirina, Marcel Jr. 385

Kaczmarski, Krzysztof 188
Kalniņa, El̄ına 408
Kazienko, Przemys�law 219
Klau, Gunnar W. 96
Klonowski, Marek 229
Kozankiewicz, Hanna 188
Kučera, Antońın 239
Kurowski, Maciej 250
Kuty�lowski, Miros�law 229

Lāce, Lelde 408
Lenzerini, Maurizio 38
Liao, Bei Shui 92
Liotta, Giuseppe 106
Luoma, Olli 259
Lynch, Karol 199

Malowiecki, Michal 399
Marshall, Geoffery 127
Matrejek, Mariusz 219
Mayer-Lindenberg, Fritz 390
Miyakawa, Masahiro 408
Monnot, J. 62
Mukai, Naoto 368
Müller-Quade, Jörn 288
Mutzel, Petra 41

Narula, Neha 209
Návrat, Pavol 372
Nazerzadeh, Hamid 269
Nguyen, Ngoc Thanh 399
Niewiadomski, Adam 403

Ozols, Raitis 408

Paschos, V. Th. 62
Petrovic, Srdjan 209

428 Author Index

Pinzon, Yoan 380
Poniszewska-Maranda, Aneta 413
Porschen, Stefan 278
Proietti, Guido 147

Raub, Dominik 288
Rollet, Antione 157

Šafránek, David 320
Sawitzki, Daniel 298
Schek, Hans-Jörg 42
Seibert, Sebastian 147
Seidmann, Thomas 47
Senft, Martin 350
Serrière, F. 62
Shinohara, Ayumi 380
Šimša, Jǐŕı 320
Smeets, Nele 418
Srba, Jǐŕı 178
Steegmans, Eric 418
Steele, Robert 310

Steinwandt, Rainer 288
Strejček, Jan 239
Subieta, Kazimierz 188, 360
Sýkora, Ondrej 376
Székely, László A. 53

Taimiņa, Daina 408
Tarhini, Abbas 157
Tatsumi, Hisayuki 408
Tayu, Satoshi 330
Torok, Lubomir 423

Ueno, Shuichi 330

Vrťo, Imrich 376

Watanabe, Toyohide 368
Weiskircher, René 96

Zagórski, Filip 229
Zhu, Xuefeng 340

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

